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Abstract 

Currently there is a great deal of interest in automated high- 
speed DNA (deoxyribonucleic acid) sequencing for large scale ge- 
nomic sequencing projects. Automated DNA sequencing involves 
computer interpretation of the chemical detection data which may 
be in the form of 2-D autoradiogram images, and 1- or 2-D fluores- 
cence data. The analysis of autoradiogram images generated by the 
multiplex DNA sequencing method is considered. An overall ap- 
proach to obtaining sequence data from the autoradiogram images is 
outlined and specific approaches for segmentation of the image into 
sets of four lanes, obtaining I-D profiles of the lanes, detection of 
peaks in the 1-D profiles using a multiscale approach and aligning 
profiles across lanes using an interpolation method are discussed. 
Some intermediate results are also presented. 

1.’ Introduction* 

Currently there is a great deal of interest in automated high- 
speed DNA (deoxyribonucleic acid) sequencing for large scale ge- 
nomic sequencing projects. Since the 1970’s there has been an 
exponential increase in the number of nucleotides that have been 
sequenced each year (and is cwrently almost 20 million bases) [l], 
consequently collaboiative efforts have been initiated among the 
United States’, European and Japanese DNA Databanks to man- 
age the expected tremendous increase in sequence data that will re- 
sult from systematic genomic mapping programs [2]. Furthermore, 
Wada [3] estimates that automated sequencing techniques should 
reduce the cost from the present US $1 per sequenced nucleotide 
(approximate) by an order of magnitude given a potential through- 
put of 1 million bases per day. 

One key step in automated DNA sequencing involves computer 
interpretation of the chemical detection data which may be in the 
form of 2-D autoradiogram images, and 1- or 2-D fluorescence 
data. Several commercial automatic film readers with varying accu- 
racy and speed of reading have been developed [4,3,5]. We discuss 
approaches for analyzing 2-D autoradiogram images with consider- 
ation for reliability and computational requirements. Some of the 
approaches discussed are not only applicable to autoradiogram data 
but also one- and two-dimensional fluorescence data. 

We briefly describe the expeiimental protocol used to generate 
the autoradiograms and introduce terminology. Church and Kieffer- 
Higgins introduced multiplex DNA sequencing [6] which mixes 
together different DNA fragments, with each fragment being flanked 
by two different oligonucleotide tags at the cloning stage. The mixed 
fragments are amplified , then undergo Maxam-Gilbert chemical 
sequencing to yield four sets of reaction products: G (guanosine), 
C (cytosine) + T (thymidine), G + A (andenosine), and C. The four 
reaction products are sorted by mobility in an electric field (which 
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is proportional to size) in adjacent lanes of a sequencing gel and the 
result transferred to nylon membranes. The membranes are then 
probed with radioactively labeled complementary tag sequences; 
since each fragment has two unique tags it can be probed twice 
which allows for redundancy and error checking. Each probing 
produces an autoradiogram like the one shown in Figure 1. Distinct 
dark bands can be seen and these arz equivalent to resolving a single 
nucleotide of the original DNA fragment sequence; the column 
location of the band (or corresponding bands for G or C) provides 
infomation for identifying the nucleotide type and the row location 
specifies the position of the nucleotide within the original DNA 
sequence fragment. The bands being approximately unifoim in 
width, line up to form a lane or track and coiTesponds to one of 
the reaction products; so each group of four lanes represents the 
information for obtaining the complete sequence of a DNA fragment. 
The lanes, however, are not always vertically oriented and straight; 
the shape of the lanes is sometimes referred to as well morphology. 
The vtuying morphology of lanes, nonuniformity in band shape, size 
or spacing, and the shifting in alignment between lanes necessitates 
sophistication in automatic reading algorithms. 

The advantage of the multiplex approach over standard DNA 
sequencing methods is in reducing the number of separate chemical 
reactions by multiplexing early in the sequencing protocol and de- 
multiplexing only prior to forming an autoradiogram; so the speedup 
over conventional approaches is proportional to the ‘amount of mul- 
tiplexing [6]. The multiplex approach also provides an internal 
standard whose sequence is known and hence can be used to esti- 
mate distortion parameters as well as speed up the reading of the 
probe autoradiograms. Once the multiplex sequencing method has 
been optimized it may be feasible to probe in parallel 100 mem- 
branes each day (on a twenty day cycle basis with twenty probes) 
with each membrane containing about 5000 resolvable nucleotides 
of information in twelve groups of lanes, to generate approximately 
500,000 bases of data per day [7]. Processing such a large volume 
of data will inevitably require robust algorithms to read, assemble 
and analyze autoradiogiams. 

The multiplex sequencing method operates in a batch style in 
the sense that the complete autoradiogram must be developed be- 
fore the sequence can be read. Continuous on-line sequencing sys- 
tems that do not require radioisotopes and autoradiogram recording 
have been developed using fluorescence based detection. Fluores- 
cence based methods may produce either one-dimensional traces for 
each nucleotide [8, 5, 91 or two-dimensional images [IO] resem- 
bling autoradiograms and may be based on a single-dye four-lane 
sequencing foimat or a four-dye single-lane format. Fluorescence 
based methods, however, also have some disadvantages including 
lower sensitivity, spectral overlap in the emission of the fluorescence 
dyes, changes in the electrophoretic mobility of the DNA fragment 
to which the dyes are. bound [8, 111, slower scanning, less reliabil- 
ity, and less flexibility [4], as well as higher cost [3, 41. A novel 
method that uses a multi-wire proportional counter (MPWC) to re- 
duce the exposure time required to detect radioactivity and form 



an image along with algorithms for automatically interpreting the 
comer MPWC images to determine the sequence is described in 
[12]. This paper uses only autoradiogram images resulting from 
multiplex DNA sequencing. 

2. Analysis of Autoradiogram Images 

Although radiograph images, particularly for biomedical diag- 
nosis applications, have been analyzed by computer since the early 
1960's [ 131, two-dimensional gel electrophoresis autoradiogram im- 
ages (of usually protein materials) have been investigated primarily 
in the 1980's [14, 15, 161. DNA autoradiogram images of interest 
to us, however, have been analyzed by computer only recently [4, 
17, 18, 191. 

Radiographic image analysis usually consists of six general 
steps: (i) digitization of film, (ii) preprocessing for image enhance- 
ment, (iii) segmentation, (iv) extraction of size and shape character- 
istics, (v) extraction of texture features, and (vi) classification [13]. 
These six steps could also be applied to the analysis of DNA au- 
toradiogram images. However, rather than taking a two-dimensional 
approach involving boundary and region detection, shape descrip- 
tion, etc., the autoradiogram image is converted to a set of one- 
dimensional signals which are then used to determine the DNA se- 
quence. This reduction of dimension is possible due to the underly- 
ing nature of the data and the classification task which is to recover 
a linear ordered DNA sequence from the image. This approach also 
offers several advantages including speed of processing, robustness 
to distortions. and applicability to the analysis of DNA sequencing 
data based on other methodologies including the fluorescence based 
detection strategies described above. 

Figure 1 shows a complete autoradiogram image of a standard 
membrane based on the multiplex sequencing method; the original 
image is 3691 x 1451 pixels with two bytes per pixel for gray level 
information. The membrane is 43 cm x 35 cm so the sampling 
rate is approximately 116 microns in the vertical direction and 
241 microns in the horizontal direction (or 453 dots/inch x 218 
dots/inch). Although higher resolution may be desirable the current 
images already require 10.7 Mb (megabytes) of storage which is 
equivalent to about forty-one 512 x 512 video frames; a 50 micron 
sampling rate would require about 120 Mb per image or equivalently 
459 video frames. There are 48 lanes in Fig. 1 with each group 
of four lanes required to form a sequence. Since this is a standard 
each set of four lanes is from the same sequence and can be used to 
estimate information about band and lane distortions and variations 
in morphology. Figure 2(a) shows a 768 x 768 subimage of the 
image in Figure 1 that reveals more detail about the band patterns 
and reflects some of the detail available in the original image. 
The overlaid grid gives indications about the size of the features 
in pixel dimensions; width of bands range from 60 to 100 pixels 
and thickness of the bands varies from about 10 to 25 pixels. 
Furthermore, even in this seemingly distortion-free region of the 
entire autoradiogram the curvature of the lanes (vertical features) 
and bands (horizontal features) are visible. 

Figure 2(b) shows a histogram for the 768 x 768 region in 
the original image. It reveals the limited range of gray levels 
in this region, approximately half the 256 gray levels available. 
Contrast enhancement algorithms can improve the appearance of 
the image. 2(a) the gray levels have 
been linearly rescaled to the full range of 256 gray levels which 
was considered adequate and superior to histogram equalization. 
The histogram also shows that setting a threshold (even a locally 
adaptive one) for isolating the bands from the background would 
be difficult. Thresholding usually led to incomplete, missing or 
merged bands. One of the reasons for this is the variation in dynamic 
range of the band intensities. For example, the ratio of background 

For the image in Fig. 

intensity to band intensity for clearly visible dark bands ranges 
from 40 to 2; and for faint bands can be as low as 1.03, almost 
indistinguishable from the background. Furtheirnore, companion 
bands are also highly nonuniform in intensity which makes their 
detection and classification an even more difficult task. Companion 
bands are those bands that must appear in two lanes. For example, 
in the chemistry protocol used to generate the autoradiogram of 
Fig. 1, bands in the first lane indicate the presence and position of 
guanine (G) bases, in the second lane the pyrimidines (Y) which 
are cytosine and thymine (C+T), in the third lane the purines (R) 
which are guanine and adenine (G+A), and in the fourth lane C; so 
companion bands would appear in lanes one and three for each G 
or lanes two and four for each C. If a companion band is missed 
then the base could be mislabeled. The image intensity dynamic 
range for companion bands ranges from 2 to 0.25 so faint bands 
can be easily missed using simple thresholding or edge detection 
operators. In fact many edge operators (including popular 3 x 
3 masks such as the Prewitt, Sobel, Frei-Chen. or moment-based 
as well as more sophisticated operators such as the zero-crossings 
in the Laplacian of the Gaussian, or maxima in the output of an 
oriented first derivative of a Gaussian operator proposed by Canny) 
gave unsatisfactoxy results due to spurious edge responses, missing 
edge boundaries, merged edges, and disconnected or shifted edge 
contours. These difficulties in edge detection would need to be 
overcome using more sophisticated post processing algorithms for 
linking, grouping and classifying edges. Consequently, neither the 
region detection based (using thresholding) nor boundary detection 
based (using edge detection) approaches was strictly followed. 

The difficulties can be appreciated by the reader in trying to de- 
termine the sequence corresponding to the image in Fig. 2(a). There 
are 2 112 sets (of 10 lanes) corresponding to the same sequence. In 
the first four lanes for example one can resolve 40 bands which 
starting from the top reads (from left to right): 

CATT'GTTAGA lTTCATACAC GGTCCTGAC 
tg CG'TTAGC A 

The lower case letters indicate a region of compression where two 
nucleotides should occur but are difficult to resolve in the image. 

Since the objective is to process 100 autoradiograms (mem- 
branes) per day, this requires that each autoradiogram be analyzed 
in under 15 minutes (or about 21 seconds per video frame equivalent) 
from scanning to sequence recognition. Since computer analysis is 
decoupled from the electrophoresis equipment more time could be 
devoted to analyzing each film by using more computers. This can 
be readily accomplished by using one or more scanners to capture 
data and then using a group of locally networked computers to ana- 
lyze each film (for n computers the available time for analysis would 
increase by 15n minutes, n < 100). In fact the same principle could 
be applied in order to distribute the work for analyzing each image 
by partitioning the image into blocks. 

3. Image Analysis Methods 

An overall paradigm for analyzing autoradiograms generated by 
the multiplex DNA sequencing approach is shown in Figure 3. It 
should be emphasized that the flow diagrams indicate a prelimintuy 
approach only portions of which have been tested. There is scope 
for optimization of the modules as well as improvements to the ap- 
proach itself. The initial steps of digitization and quantization of 
scanner data, preprocessing (histogram modification, filtering and 
morphology operations for image enhancement), and identification 
of the film as being a standard or probe is shown in Fig. 3(a). This 
first stage also involves film registration to accommodate for the 
placement of the film with respect to the scanner and extraction of 
identification information (such as the numbers shown in Fig. 1 or 
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possibly bar codes) to keep track of the image and the sequence 
in large sequencing projects. The processing steps for the standard 
are shown in Fig. 3(b) and for the probe in Fig. 3(c). The out- 
puts are shown are dark shaded boxes and inputs as lighter shaded 
boxes. The outputs include the digitized (and possibly enhanced) 
image, registration information, lane geometry and distortion param- 
eters. The inputs include sequence reading rules which reflect the 
sequencing protocol used and the sequence used for the standard. 
Based on the number of correctly identified bases in the standard, it 
may be rejected if there are too many errors due to distortions arising 
from experimental conditions. One of the advantages of the mul- 
tiplex sequencing method is the availability of an internal standard 
for estimating lane boundaries, lane registration, band size, shape 
and spacing variations. Once these parameters are estimated then 
they can be used to speed up the reading of the probe sequences (up 
to 40 autoradiograms or more) and do not have to be recalculated 
each time as in the usual sequencing approach where an inteinal 
standard is not available. 

We present some initial results and examine the methodology of 
the various steps for different stages of the approach shown in Figure 
3. Methods for: (a) segmentation of the image into groups of four 
lanes, (b) one-dimensional profiling for each lane, (c) band (peak 
or valley) detection, (d) feature extraction, (e) inter-lane alignment, 
and ( f )  classification based sequence construction, are discussed. 

3.1. Segmentation Into Lanes 
In [18] lanes were detected using projections onto the horizontal 

axis, where pixels along each column for a given number of rows 
are summed together. Given an image g(z,y) then a local x- 
prqjection, C(z), is defined as C (z) = g (5, y). The window 

size is influenced by the sampling rate as well as the size of the 
features to be detected. First derivatives in C(z) are used to initially 
estimate the location of the lane boundaries which are refined by 
lane following. Figure *a) shows an example of an x-projection. 
Although the window covers 6 1/2 lanes only one can be detected. 
The reason the projection approach fails is because there are no 
distinct gaps between the lanes; a necessary requirement for the 
approach in [18]. Furthermore, as noted earlier there is a large 
variation in lane widths that needs to be determined from the image 
and not biased in terms of prior estimates. 

A simple edge detector is first applied to find vertical edges in 
the image then maxima are sought in the x-projection to determine 
the initial location of the lane boundaries. Several 3 x 3 edge 
operators of the form 

I(-. 0 *) (3.1) 

!JEW 

-1 0 1 

s + 2  -1 0 1 

were tried as well as the 2 x 2 difference operator . 
The values of s that were tried are 1 (Prewitt), 2 (Sobel), 1.4142 
(Frei-Chen), 2.0671 (moment) and 2.0668 (closed band). The 2 x 
2 operator gave much fewer responses than the 3 x 3 operators all 
of which behaved quite similarly with the moment and closed band 
giving fewer spurious responses. Figure 4(b) shows the x-projection 
after applying the Prewitt operator from which the lane boundaries 
can be detected. The detection and localization can be improved 
by using long narrow operators such as 7 x 3, tailored to detect 
vertical edges, by suppressing nonmaxima in the horizontal direction 
(orthogonal to the edges), and by smoothing,the x-projection profile 
to reduce noise. In order to refine the boundary estimates the 
correlation coefficient can be used to detect the transition from 
one lane to the next by searching in a small neighborhood around 
the maxima in the x-projection of the edge operator responses. 

-1 (-' '> 

Consider two adjacent columns g(n) and g ( n  + k) in the image 
where n = (nl,n2) and k = ( k l , k 2 )  are integer coordinate pairs. 
Under the assumption of Gaussian noise in the two columns the 
pixel intensities can be considered to be samples from a bivmiate 
Normal distribution. Then the maximum likelihood estimate of the 
correlation coefficient p is 

UEW 
c [9 ( 4  - S(n) l  Is (11 + k )  - sj(. + k)l 

p^' (3.2) 

( c [9 (11) - B(n)I2 19 (n + k )  - B ( n  + k)12) 
UEW 

where B (n) and 3 (n + k) are estimates of the mean and the window 
W is a thin (one or few column wide) strip. When, N w ,  the number 
of pixels in W is large or moderate the aansformation of p̂  known 
as Fisher's z, 

2 = -loge (;$) - 
2 (3.3) 

has an asymptotic Normal distribution with mean z = ;loge I - p  

and variance A. So the hypothesis H ,  : p = p, can be tested 
using tables of the standard Normal distribution. The location in the 
search area where po drops below 0.75 for example can be used to 
delineate a lane boundary. 

(9 

3.2. Lane Profiles 
Most methods of analyzing DNA autoradiograms proposed to 

date have relied upon converting the two-dimensional image to a 
set of one-dimensional profiles or densitometric traces. The profiles 
are obtained with or without the use of column-to-column cone- 
lations within each lane. Some type of correlation or registration 
analysis is necessary when the bands are curved and non-horizontal 
in order to obtain a high resolution profile that reduces the effects 
of noise. Rather than using the conventional coiTelation function 

g (n) g (n + k) which requires multiplications and is sensitive 
llEW 
to brightness changes across the image, the following morphologi- 
cal correlation is used, 

M ( k )  = m i n ( s ( n + k ) , g ( n ) )  (3.4) 
UEW 

Maximizing M(k) can be shown to be equivalent to minimizing 
1g (n) - g (n + k) I the sum of the absolute values of the dif- 

U€ w 
ferences [20]. In order to reduce the sensitivity of M (k) to absolute 
brightness levels the local means can be first subtracted from each 
column. One key advantage of using M (k)  is that it is fast since 
each term requires only a comparison operation. The number of cal- 
culations can be further reduced by evaluating only partial sums of 
M (k) with thresholds to reject poor matches early in the matching 
process. Determining the displacement k with respect to the center 
of the lane is usually sufficient to follow gradually sloping bands. 
Figure 5 shows the profiles for the first four lanes of the image in 
Fig. 2(a) as an inverse image (that is the peaks correspond to the 
dark bands). 

For geometric accuracy at the sub-pixel level some form of 
inteipolation is required. For a fixed column, Icg ,  determine the 
optimal value of k l ,  

(3.5) 
niax Icy = M(k1,Icz) 

k l  
Then sub-pixel accuracy can be achieved by fitting a quadratic 
function to several values of k1 around kf" and selecting Ic; as 
the location of the maximum of the function. A simple alternative 
that examines just one value of the correlation on either side of 
Icym is 

which shifts the value of k;'" by up to half a pixel if there is 
asymmetry in the values of M(k)  to either side of kin" [21]. 
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33. Multiresolution Peak Detection 
The peaks (which correspond to the dark bands) in Fig. 5 need 

to be reliably detected and accurately located. Peaks are modeled as 
being Gaussian shaped, Aexp (-$ (y)'). The following three 
steps are used to initially locate and characterize the peaks: 

1. Convolve the image I with the second derivative of the Gauss- 
ian, %, for several values of the scale parameter U (the range 
of U is governed by the largest and smallest peaks to be de- 
tected). It should be noted that the result of the convolution 
does not shift the location of the peaks. 

2. Mark the maxima in each * I  image where the dark bands 
in the image correspond to peaks in the profile. 

3. For each maxima marked in Step 2, calculate &a * I using 
which the peak's scale size h can be estimated as 

and the peak strength A as 

(h2  + u2) * I 
6 h o  

A =  

Since B, = 0 ideally at the center of a peak the estimate of h 
should be close to &. So estimates for h that differ greatly 
from 40 should be rejected as candidate peaks at that scale. 

The justification for this approach follows that of the multiscale 
region detector proposed in [22] for fitting disk shaped regions 
to textured images; in the above algorithm we use the model of 
Ggussian shaped peaks. 

Since neighboring peaks interact the above estimates for the 
peak location, size and strength are iteratively refined using a max- 
imum likelihood updating scheme [23]. 

3.4. Feature Extraction 
A number of features that would be useful for constructing the 

sequence are extracted from the image. For the bands these would 
include: (i) location of the peak, (ii) location of the band centroid, 
(iii) band area (strength) and ratio of peak strengths between the 
lanes for a given row position, (iv) width and height of band 
estimated using a best fitting ellipse, (v) orientation of the ellipse, 
(vi) elongatedness , and (vii) irregularity of shape in compaison to 
an ellipse which can be estimated as the difference in area between 
the fitted ellipse and the actual band. Within each lane useful 
features are: (i) average spacing between bands, (ii) average height 
of bands, (iii) a model function for describing variation in band 
spacing from the bottom to the top of each group of four lanes, and 
(iv) a model for describing variation in band height within each lane. 

These features along with rules for dealing with merged bands 
that appear as plateaus in the lane profile, compressed bands, faint 
closely spaced bands that often appear as shoulders around a peak 
are all used in the classification stage. 

3.5. Inter-lane Alignment 
Even in regions of the image where the bands appear relatively 

straight some type of registration correction between lanes is neces- 
say. For example, in Fig. 2(a) for the leftmost four lanes the third 
lane is shifted downwards by around 14 pixels with respect to the 
first lane near the bottom of the image and by around 19 pixels near 
the top of the image. This misregistration between lanes is evident 
in Fig. 5 where for example the peaks in lane one and three-cor- 
responding to a G around pixel 90 do not coincide. Similarly, the 
bands in lane four are shifted downwards by around 14 pixels with 

respect to lane two in the lower portion of the image and around 24 
pixels in the upper portion of the image. So the lanes need to be 
aligned with respect to each other before the classification stage. 

Suppose locally the geometric distortions can be represented 
by a bilinear transformation. Let P1,Pz9P3, and P4 be a set of 
control points representing the local warping as shown in Fig. 6.  
If we wanted to produce an image with straightened tracks and 
bands then we would transform the quadrilateral to a rectangle. A 
bilinear transformation of each coordinate accomplishes this. The 
parameters of the transformation can be determined by solving two 
systems of four linear equations each. Once the transformation is 
available then the output image can be determined quite efficiently 
(that is determining which pixel(s) of the input image fills a given 
pixel of the rectangular output image), requiring just two additions 
per pixel. However, obtaining a straightened image is not necessary 
for aligning the lane profiles with respect to each other. 

P 

P 
2 

P Figure 6 Bilinear interploation for inter-lane alignment 
1 

Given the control point coordinates the coordinates of P in the 
relative coordihate system which is defined as the fractional distance 
along opposite sides of the quadiilateral are desired. The relative 
coordinate w is the one required for alignment; the profiles are de- 
fined along the center-line of each lane and for inter-lane alignment 
the profiles need to be manslated within the control quadrilateral to 
a common line. In order to determine w we introduce points Ps 
and P6 then, 

P5 = w (P3 - Pl) + Pl (3.9) 
P6 = W (P4 - P2) + P2 

Using (3.9) and the expression for the slope of h e  P5PG results in 
the following quadratic equation for w 

U l W 2  + a2w + a3 = 0 (3.10) 

where 

a1 = (("3 -Xl)(Y4 - ?/a)  - ( 2 4  - 2 ? ) ( Y 3  - Y l ) )  

U? = ( Z p  - "2) (Y3 - Y1) - ("4 - 2 2 )  (Y1 - Yp) - 
("3 - "1) (Yp - 2/21 + ("p - 2 1 )  (Y2 - Y4) 

a3 = ((.p - "2) (Y1 - Y P )  - ("p - 21) (Y? - Yp)) 

with the coordinates of Pi being (z,,~,) and of P being (zp,yp). 
The desired root for w E [0,1]. Knowing w (for each point in the 
profile) then all the points of a profile can be translated to any other 
location in the direction defined by P5P6 simply by scaling each 
of the values of w. Suppose the line p5P6 is translated to Pipi 
then each value of w in the original line is scaled by the factor 
llPiPAll/ llPsP611 along the new line. In this manner each of the 



four profiles can be translated to a common line (or aligned with 
respect one of the profiles) in order to achieve inter-lane alignment. 

The dif5cult part of the alignment problem is to locate the con- 
trol points. Since lane 1 and 3 share common bands for each G 
and lane 2 and 4 share common bands for each C each of the two 
lanes can be registered with respect to its companion using correla- 
tion methods. The result would be two control quadrilaterals which 
need to be merged into one set of four control points. Although 
the warping may not always be locally bilinear it is expected to be 
continuous and smooth. So in the process of merging control quadri- 
laterals the continuity of slopes can be used as constraints. When 
a bilinear interpolant does not allow for continuity of slopes then 
a higher order polynomial curve may be used as the interpolating 
function instead. 

Once the profiles are aligned then classification can be per- 
foimed using the features previously extracted to determine the or- 
dered sequence. Currently we are improving the peiformance of 
a combined statistical and rule-based approach to the classification 
task. 
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