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ABSTRACT

Physiological properties of blood flow at the microvasculature scale
can be measured by tracking the movement and density of red blood
cells (RBCs). In this paper we propose a method for individual RBC
segmentation to enable tracking and capturing dynamically varying
bulk transport properties. RBCs have varying annular and disk like
morphologies, and are often clustered into clumps that are difficult
to segment using watershed-based methods. Edge profile active con-
tours in combination with graph coloring based coupling (C-EPAC)
are introduced as a robust approach to prevent merges between ad-
jacent, clumped RBCs by modifying the active contour energy func-
tion to be sensitive to a specific edge profile and not just the mag-
nitude as in the traditional methods. Explicit coupling is combined
with graph coloring to efficiently compute the contour evolution us-
ing the fewest number of level sets to support high-throughput stud-
ies of RBC flow characterization under varying physiological condi-
tions.

Index Terms— cell segmentation, level set active contours, red
blood cells, cell tracking.

1. INTRODUCTION

Measuring the flow dynamics of red blood cells (RBCs) is important
for quantitatively characterizing phenomena such as nutrient and gas
transport, clumping and clotting, sickle cell behavior and vascular
occlusions. The majority of blood flow analysis studies with few ex-
ceptions [1–3] focus primarily on mean flow properties which lack
the single cell resolution needed to quantify accurate time varying
flow parameters. The flow characteristics of blood plasma suspen-
sions are largely determined by the dynamic behavior of the sus-
pended particles [4], so studying the behavior of single red blood
cells and their collective motion will provide a better quantitative
understanding of the rheology of blood flow. In order to characterize
the dynamic behavior of microvasculature flows, individual RBCs
need to be detected, segmented and tracked. The segmentation and
tracking of red blood cells introduce unique challenges. Red blood
cells usually occupy more than one-third of the volume in blood.
They interact with each other and with the environment due to ef-
fects of varying cell concentration, cell morphology, cell rheology,
and confinement. These interactions result in dynamically changing
collision and clustering effects, which along with variability of ap-
pearances (annular versus filled cells) make segmentation and subse-
quently tracking of individual cells challenging. While tracking few
individual cells may be adequate to estimate mean flow properties,
it is also important to accurately segment and track clustered cells
in order to effectively quantify hydrodynamic interactions between

cells that lead to velocity fluctuations and diffusive dynamics of indi-
vidual cells. This paper presents a robust and efficient approach that
combines a voting-based seed detection and a novel active contour
cell segmentation method to accurately segment individual RBCs.
Individual cell level and population level statistics can be computed
by a multi-hypothesis testing multi-cell tracking module [5] follow-
ing the segmentation. Exploiting the fact that the red blood cells are
in circular or annular shape, we propose an approach that uses an im-
proved iterative voting scheme similar to [6] to reliably generate ini-
tial markers for individual cells. Starting from these seeds/markers,
the proposed coupled edge profile active contours (C-EPAC) expand
to correct boundaries of RBCs. This novel method enables correct
segmentation of both filled and annular cells by forcing the active
contours to stop on specific edge profiles. Multiple cells are seg-
mented simultaneously by using an explicit coupling scheme that
efficiently prevents merging of cells in clusters.

2. METHODS
2.1. Individual cell seed detection

Segmentation of individual cells is an important and challenging ne-
cessity for biomedical image analysis studies. Analysis of cell mor-
phology (shape, structure, color, texture), distribution in still images,
and cell motility/behavior in image sequences heavily rely on iden-
tification of individual cells. Due to high density, collisions, and
interactions, red blood cells tend to form tight clusters. Various ap-
proaches have been proposed for cluster decomposition and for in-
dividual center or seed point detection. An extensive overview of
related work can be found in [7]. The proposed system detects indi-
vidual RBC centers using a technique based on iterative voting ap-
proach described in [6]. The method applies a series of cone-shaped
kernels (Figure 1a) to potential cell boundary points. These kernels
generate votes along the radial directions whose accumulation re-
sults in a peak in the voting space located at the center of a circular
object. The iterative approach refines the center of mass at each iter-
ation until it converges to a focal response. Figure 1 shows the final
voting landscape and the resulting centers for a sample RBC cluster.
We further improve this technique by applying a pre-filtering ap-
proach that reduces fragmentation (i.e. reducing multiple centers for
a single nucleus), by improving the radial directions by exploiting
both image gradient information and region segmentation informa-
tion for better localization, and by post-validation of the centers by
distance statistics.

2.2. Segmentation with edge profile active contours

While region-based active contours have been succesfully used in
many cell and nucleus segmentation applications [8], they require
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Fig. 1: Seed detection using iterative voting. a) iterative voting kernel, b) ra-
dial directions, c) vote surface after 2nd iteration, d) detected centers (seeds)
overlayed on the original cell cluster image.

homogeneous intensity inside the cell boundaries as well as in the
background, hence they are not applicable in some cell imaging
modalities. Figure 3a shows typical red blood cells, where a straight-
forward implementation of [8] would converge to the white regions
inside the annular red blood cells as opposed to the correct bound-
aries. Extensions to multi-phase would also lead to similar segmen-
tation. For these types of images where intensity inside the cell
boundaries is heterogeneous, edge-based approaches are more suit-
able. The classical geodesic active contour approach [9] is designed
to stop at edges regardless of the region characteristics. In level set
based active contour methods, a curve C is represented implicitly via
a Lipschitz function φ by C = {(x, y)|φ(x, y) = 0}, and the evo-
lution of the curve is given by the zero-level curve of the function
φ(t, x, y) [8]. In regular geodesic active contours [9] the level set
function φ is evolved using the speed function,

∂φ

∂t
= g(∇I)(Fc + K(φ))|∇φ| + ∇φ · ∇g(∇I) (1)

where Fc is a constant, K is the curvature term (Eq.2) and g(∇I)
is the edge stopping function, a decreasing function of the image
gradient which can be defined as in Eq.3.
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g(∇I) = exp(−|∇Gσ(x, y) ∗ I(x, y)|) (3)

The constant balloon force Fc pushes the curve inwards or outwards
depending on its sign. The regularization term K ensures bound-
ary smoothness and g(I) is used to stop the curve evolution at cell
boundaries. This approach usually suffers from early stopping on ir-
relevant edges if not initialized properly. Initial contours are usually
obtained by a detection step using spatial or spatio-temporal prop-
erties (e.g. [10, 11]), and the active contour shrinks from outside to-
wards the cell boundary. For red blood cell segmentation, we follow
a different approach where the seeds (initial markers) found by iter-
ative voting serve as initial detections and the contours expand from
the seeds to the cell boundaries. To obtain an accurate segmenta-
tion, we propose an expanding level set active contour that stops the
evolving contour on the correct cell boundary based on the perpen-
dicular edge profile. Both filled dark cells and annular cells have the
same dark-to-bright profile on their outer boundaries as showin in
Fig. 2 (edges E1 and E4). Initializing with a seed at the center of the
cell (Fig. 2 C1 and C2 ), the regular geodesic active contour would
stop at the inner boundary (bright-to-dark transition) of the annular
cell, resulting in an inaccurate segmentation (Fig. 2d top). The pro-
posed active contour (C-EPAC) is guided by the desired edge profile
which effectively lets the curve evolve through inner boundary of the
annular cell and stop at the correct outer boundary as in Fig. 2c top
(edges E1,E4 for seed C1) and Fig. 2c bottom (edges E3,E4 for seed
C2). The stopping function of the proposed method is obtained as

Fig. 2: Comparison of coupled-regular geodesic active contours( C-GAC)
vs. proposed coupled- edge profile active contours (C-EPAC). a) An RBC
cluster consisting of an annular and a filled cell with seed points C1 and C2
and the intensity profile along the marked green line L, b) Gradient and gra-
dient magnitude profiles along L, c) Desired stopping edges for C1 (top) and
C2 (bottom), d) Segmentation results C-GAC (top) and proposed C-EPAC
(bottom).

follows. Edge profile is obtained as the intensity derivative in the

direction of evolving contour/surface normal �N :

I �N = �N · ∇I , �N = − ∇φ

|∇φ| (4)

Dark-to-bright transitions produce positive response in I �N while ex-
panding the contour from inside to outside. This is the desired tran-
sition to stop the contour, hence we define the edge profile-guided
stopping function gd as:

gd(∇I) = 1 − H(− ∇φ

|∇φ| · ∇I) , H(x) =

j
1 if x > 0
0 elsewhere

(5)

This sets gd to 1 at regions where there is a bright-to-dark transi-
tion (inner contour of annular cell) perpendicular to evolving level
set, and to zero where there is a dark-to-bright transition (outer con-
tour of annular cell). Thus it lets the active contour evolve through
the annular cells without getting stuck at the inner boundaries. Eq.6
shows the speed function of the proposed curve evolution. Figure 2d
shows a portion of a frame with annular and filled cells, where the
regular geodesic active contour gets stuck at the inner contours of an-
nular cells but the proposed method accurately evolves to the correct
boundary.

∂φ

∂t
= gd(∇I)(Fc + K(φ))|∇φ| + ∇φ · ∇gd(∇I) (6)

2.3. Explicit coupling for multiple cell segmentation and graph
coloring

The level set active contour proposed in the previous section suc-
cessfully segments a single cell with no neighboring cells. But for
clustered RBCs that have no discernible boundaries between them,
a single level set would produce a single lumped segmentation by
merging all contours that expand from several seeds. In order to
avoid merging, a N-level set approach has been proposed in [12]
that assigns each cell a separate level set coupled with all other level
sets. While this solves the merging problem, it is very computation-
ally expensive and not scalable since it requires evolution of N level
sets with N2/2 couplings where N is around 100 cells per frame.
In order to avoid the computational cost, we use constant number of
level sets by utilizing the neighborhood relationships between cells.
A similar graph approach is applied to Chan and Vese type level sets
in [5]. We compute the Delaunay triangulation to obtain a graph
of neighborhoods. By coloring this graph so that no two neighbor-
ing vertices have the same color, we separate neighboring cells into
different level sets and reduce the number of level sets to constant
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Fig. 3: Row 1: original image, row 2: iterative voting result, row 3: colored
neighborhood graph, row 4: segmentation mask obtained using coupled edge
profile active contours.

regardless of the number of cells. We employ a greedy coloring
algorithm that produces five or six colors for the planar graph. Fig-
ure 3c shows a sample frame with Delaunay triangulation followed
by graph coloring of cell markers. In order to explicitly control the
topology evolution of these level sets so that no two cells merge, we
propose a novel explicit coupling strategy (Eq.7) which stops any
level set φi from intruding to the foreground region of any other
level set φj by intersecting background masks of φj as the only per-
missible region for φi to expand:

∂φi

∂t
= [gd(∇I)(Fc+K(φi))|∇φi|+∇φi·∇gd(∇I)]

Y
j �=i

(1−H(φj))

(7)

3. EXPERIMENTAL RESULTS

RBC flow videos described in [4] are used for testing. These videos
capture blood flow in microfluidic devices under controlled oxygen
concentration. Blood flows through channels with crosssectional
dimension of 250 × 12 mm and is driven by a constant pressure
head. Videos are captured at a rate of 60 frames per second, with a

FN FP Recall Prec

MC-WAT 20.5% 0.2% 63.5% 87.9%
C-GAC 3.6% 1.1% 67.3 % 70.5%
C-EPAC 1.7% 3.9% 80.6% 81.5%

Table 1: Segmentation performance compared to manual ground truth
for MC-WAT: marker-controlled watershed on intensity, C-GAC: coupled
geodesic active contours (using the proposed coupling method), and pro-
posed C-EPAC: coupled edge profile active contours.

resolution of about 6 pixels per micron. Figure 3 shows outputs of
the major steps of the proposed RBC segmentation system on a sam-
ple frame. Figure 4 shows segmentation results obtained from the
proposed coupled edge profile active contours (C-EPAC), marker-
controlled watershed (MC-WAT) RBC segmentation as in [4], and
coupled regular geodesic active contours (C-GAC). In all cases,
centers found by iterative voting (Section 2.1) are used as initial
markers, which is already an improvement compared to the mor-
phological markers used in [4]. Both versions of the watershed
approaches (Figure 4 (rows 1,2) suffer from different problems even
though improved markers have been used, mainly due to the an-
nular cells. In (Figure 4-row 3) improved voting-based seeds and
the added coupling term greatly improve performance of regular
GAC but inner edges of annular cells cause early stopping and
consequently shape deformations. Proposed method C-EPAC (Fig-
ure 4-row 4) produces substantially better results in terms of recall
of cells, separation of the clusters and accuracy of the obtained con-
tours. This directly translates to increased number of reliable tracks
and increased track lengths. Table 1 presents quantitative evaluation
of methods MC-WAT, C-GAC, and proposed C-EPAC.Statistics are
obtained by comparing automatic segmentation results to manual
segmentations of 1008 cells. For a fair comparison, all the methods
have been initialized with the same seeds obtained through iterative
voting (Sec.2.1). Reported recall numbers are strictly computed us-
ing only 1-to-1 matches between ground truth cells and segmented
cells, discarding any segmented cell that is fragmented or merged.
When merged or fragmented cells are included, the recall percent-
ages increase to 70%, 89%, and 91% for MC-WAT, C-GAC, and the
proposed C-EPAC respectively. It is worth noting that these quan-
titative results evaluate the cell detection only and not the accuracy
of cell shapes produced by the methods. As seen in Figure 4 the
proposed method produces substantially more accurate cell shapes
that increase the accuracy of the cell tracking module. Even though
proposed method creates slightly more false positives (FP), they can
be easily filtered in the subsequent tracking module by enforcing
spatio-temporal persistence criteria whereas recovering from FN
is not possible. The proposed method has the lowest FN and the
highest recall that enables accurate tracking of maximum number of
cells for accurate flow analysis.
While significant tracking accuracy have been demonstrated for
some applications and data sets in the past few years [13–15],success
and reliability of cell/nuclei tracking remain to be highly dependent
on image characteristics, cell population and environment charac-
teristics, and accuracy of prior processing steps. For individual red
blood cell tracking, we extended and adapted our cell tracking sys-
tem in [5] with constraints specific to hydrodynamics of red blood
cell flow. The proposed segmentation method ensures that clumped
cells are individually tracked over time. Since the emphasis of this
paper is not cell tracking, we briefly illustrate a sample tracking re-
sult for a flow sequence in Figure 5 using the proposed segmentation
method. Trajectories for all the cells are shown as well as the longest
tracks, and some simple displacement statistics, i.e. distribution of
RBC displacements per frame. Other more elaborate and biologi-
cally more relevant statistics can be easily computed from the tracks.
This result illustrates that the proposed method drastically improves
the cell track lengths in comparison to [4].

4. CONCLUSION

We have introduced a robust RBC detection and segmentation ap-
proach that enables accurate tracking of individual cells and hence
extraction of rich statistical information at individual cell level in-
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Fig. 4: Row 1: Marker-controlled watershed on intensity surface, row 2:
Marker-controlled watershed on gradient of the intensity surface, row 3: Cou-
pled geodesic active contours, row 4: Coupled edge profile active contours.

Fig. 5: Tracking results for a sample RBC flow sequence. Top: all trajecto-
ries, bottom: eight longest trajectories (track length > 80 frames, each tick
corresponds to 2 frames), right: distribution of RBC displacements per frame
over time.

cluding flow properties. It also enables accurate morphological anal-
ysis of cells for biologically relevant properties such as density and
clumping behavior. As far as we are aware, C-EPAC is the only level
set framework in which both annular and filled cells can be simul-
taneously segmented accurately. The extensions of Chan and Vese
approach to multi-phase and piece-wise smooth level sets would fail
to distinguish touching cells resulting in similar segmentations as
shown in upper part of Fig.2d. This approach is grounded in image
formation and can also be applied to general phase contrast imag-
ing with high cell densities. Our explicit coupling strategy controls
the topology evolution by preventing merging of neighboring cells in
RBC clusters at a drastically reduced computational cost as opposed
to traditional O(N2) coupling terms in N-level set approaches. Us-
ing this method and and our cell tracker, biologically relevant statis-
tics can be accurately computed from the extracted long tracks for
both normal and pathological flows which we will report in a future
work.
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