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Abstract. The rapid increase in pixel density and frame rates of mod-
ern imaging sensors is accelerating the demand for fine-grained and em-
bedded parallelization strategies to achieve real-time implementations
for video analysis. The IBM Cell Broadband Engine (BE) processor has
an appealing multi-core chip architecture with multiple programming
models suitable for accelerating multimedia and vector processing appli-
cations. This paper describes two parallel algorithms for blob extraction
in video sequences: binary morphological operations and connected com-
ponents labeling (CCL), both optimized for the Cell-BE processor. Novel
parallelization and explicit instruction level optimization techniques are
described for fully exploiting the computational capacity of the Syner-
gistic Processing Elements (SPEs) on the Cell processor. Experimental
results show significant speedups ranging from a factor of nearly 300 for
binary morphology to a factor of 8 for CCL in comparison to equivalent
sequential implementations applied to High Definition (HD) video.

1 Introduction

Real-time applications of image and video processing algorithms have seen ex-
plosive growth in number and complexity over the past decade driven by demand
from a variety of consumer, scientific and defense applications, combined with
the wide availability of inexpensive digital video cameras and networked com-
puting devices. Video object detection forms a core stage of visual computing
in a number of applications like video surveillance [1], visual biometrics, ac-
tivity analysis in video [8], smart rooms for video conferencing, visual effects
for film, content-based spatial queries [13], tracking of geospatial structures in
satellite imagery [17], and segmentation of cells in biomedical imagery [2], all
of which have high computational loads, storage and bandwidth requirements.
A critically challenging goal for many of these applications is (near) real-time
processing frame rates of 20 to 30 fps (frames per second) and high definition
(HD) or better spatial image resolution.
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New architectures and parallelization strategies for video analysis are being
developed due to the increased accessibility of multi-core, multi-threaded proces-
sors along with general purpose graphics processing units. For example, IBM’s
Cell Broadband Engine (BE) is based on an architecture made of eight SPEs de-
livering an effective peak performance of more than 200 GFlops, using very wide
data-paths and memory interchange mechanisms. A good exposition of scientific
computing and programming on the Cell BE is provided in[4]. Details of imple-
menting scientific computing kernels and programming the memory hierarchy
can be found in [15] and [6], respectively. The potential benefits of multi-core
processors can only be harnessed efficiently by developing parallel implementa-
tions optimized for execution on individual processing elements requiring explicit
handling of data transfers and memory management. The process of refactoring
legacy code and algorithms – originally optimized for sequential architectures
– to modern multicore architectures invariably requires insight and reanalysis
which opens the door for creative innovations in algorithm design, data struc-
tures and application specific strategies as demonstrated in this paper.

Research efforts from both academia and industry have shown the strength of
the Cell BE for video processing and retrieval [16,9], compression [7,11] and other
computer vision applications [5]. However there is not much work reported on
parallelizing algorithms/operations for video object detection and extraction on
the Cell processor. We have implemented a variety of image and video analysis
algorithms including motion estimation, blob segmentation and feature extrac-
tion in the context of object detection and tracking using multi-core systems at
varied levels of scene complexity and workload. In this paper, we describe our
parallel implementation of the morphological processing and connected com-
ponents labeling (CCL) algorithms for blob extraction optimized for the Cell
processor. The rest of the paper is organized as follows: Section 2 gives a brief
overview of the moving blob segmentation algorithm and discuss the computa-
tion and memory characteristics. Section 3 and 4 gives the detailed description
of the proposed parallel implementation for morphological operations and CCL
algorithms respectively. Section 5 describes the performance evaluation of our
implementation and the speedup achieved followed by the conclusions.

2 Moving Blob Extraction Algorithm

The multistage algorithm for extracting blobs or objects that are moving with
respect to their background is briefly outlined below:

1. Motion estimation and detection of foreground/moving regions. This step
forms the bulk of computation which varies depending on the complexity
and robustness of the motion-estimation algorithm used. We use flux tensor
computation [1,3] which consists of (separable) 3-D convolutions for calcu-
lating spatio-temporal derivatives, followed by 3-D weighted integration to
compute the flux tensor trace. Then, a threshold opertation is applied to cre-
ate a binary image or mask corresponding to moving regions. In our previous
work [12], we parallelized this step on Cell BE and our implementation was
benchmarked to process 58 frames/second on HD frame size (1920× 1080).
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2. Consolidation, filtering and elimination using binary morphology. Morpho-
logical operations “opening” and “closing” are applied to clean-up spurious
responses to detach touching objects and fill in holes for single objects. Open-
ing is erosion followed by dilation and closing is dilation followed by erosion.
More details on basic erosion and dilation operator is explained in section 3
in the context of parallel implementation. Opening is applied to remove small
spurious flux responses, and closing would merge broken responses. There is
high degree of parallelism in this step, and it is computationally expensive
step as these operators have to be applied in several passes on the whole
image. Therefore, faster parallel implementation is not only intuitive but
indispensable for real-time processing.

3. Detection of connected components and postprocessing. In principle, the bi-
nary image resulting from Step 2 must have one connected region for each
separately moving object. These regions or blobs must be uniquely labeled,
in order to uniquely characterize the object pixels underlying each blob.
Since there is spatial dependency at every pixel, it is not straightforward
to parallelize it. Although the underlying algorithm is simple in structure,
the computational load increases with image size and the number of ob-
jects − the equivalence arrays become very large and hence the processing
time [10]. Furthermore, with all other steps being processed in parallel with
high throughput, it becomes imperative to parallelize this step and to avoid
it from becoming a bottleneck in the processing stream.

4. Compute image statistics for each blob/object including: bounding box, cen-
troid, area, perimeter etc.

3 Parallel Implementation of Binary Morphological
Dilation and Erosion

Morphological operations process an input image by applying a structuring el-
ement and producing an output image, where each computed pixel is based on
a comparison of the corresponding pixels drawn from the structuring element
and the input image. The most basic morphological operations are dilation and
erosion; and, both opening and closing are compound operations based on suc-
cessive application of dilation and erosion. Dilation adds pixels to the boundaries
of objects in an image, while erosion removes pixels along object boundaries. The
rule for dilation is that the value of the output pixel is the maximum value of
all the pixels in the input pixel’s neighborhood. In a binary image, if any of the
pixels is set to the value 1, the output pixel is set to 1. The rule for erosion is
that the value of the output pixel is the minimum value of all the pixels in the
input pixel’s neighborhood. In a binary image, if any of the pixels is set to 0,
the output pixel is set to 0. This is described mathematically as:

A ⊕ B = {z|(B̂)z ∩ A �= ∅} (1)

A � B = {z|(B)z ⊆ A} (2)
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const unsigned char SE_values [ 7] =
{0x38 , 0x7C , 0xFE , 0xFE , 0xFE , 0x7C , 0x38 };

vec _uchar16 SE_Mask [7 ]=
spu_splats( SE_values [0], SE_values [1], ..., SE_values [6]);

Fig. 1. Structuring element representation and processing on input image

where B̂ is the reflection of set B and (B)z is the translation of set B by point
z as per the set theoretic definition.

In a recent paper [14], the authors describe their parallel implementation of
morphology using the Cell processor for the OpenCV environment. However,
this implementation uses one byte to represent each pixel and thus can process
only 16 pixels simultaneously by utilizing the 128-bit SIMD SPE computing unit.
Our implementation, for blob processing using a binary input image, represents
each pixel by a single bit (packed as bytes) and utilizes bitwise AND/OR SIMD
comparison operations to process 128 pixels simultaneously. However, this re-
quires an appropriate bit manipulation strategy for pixel based data access (i.e.,
bit by bit). The Cell BE processor is optimized for loading data from the local
store that is aligned into 128-bit or 16 byte vector cache lines. Thus, it became
a challenge to move the required data from local store to the SPU registers.

The data is packed in aligned byte vectors and we execute specialized instruc-
tions from SIMD intrinsic library to execute shuffle (spu shuffle) or bit rotate op-
erations (spu rlqw) to access pixel data that is located on arbitrary alignment or
the boundary of the 16 byte alignment. The spu shuffle combines the bytes of two
vectors as per an organization pattern defined in third vector. The required align-
ment pattern are stored in static look-up tables in the SPU local store. Figure 1
shows the processing of input image by structuring element and its construction
with an example of 7×7 pixel elliptical shaped element. Each row of structuring el-
ement is represented using one byte element with appropriate bit pattern stored in
a array values and which is replicated to 16 byte vector array Mask to operate on
128 pixel data of I at once. Figure 2 a) shows how to access a 16 byte aligned vector
data (current) and its neighbor vector data with one byte shift in left (previous)
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Fig. 2. Data alignment and access method

and right (next) direction. Figure 2 b) shows how to get further bit by bit access
using bit rotate and shuffle operations and the subsequent comparison operations.

4 Parallel Implementation of CCL

Connected Components Labeling (CCL) scans an image and groups its pix-
els into components based on pixel connectivity. In the first step, the image is
scanned pixel-by-pixel (from top to bottom and left to right) in order to iden-
tify connected pixel regions, i.e. regions of adjacent pixels which share the same
set of intensity values and temporary labels are assigned. CCL works on bi-
nary or graylevel images and different measures of connectivity (4-connectivity,
8-connectivity etc.) are possible. For our blob segmentation, the input is binary
image and 8-connectivity measure is considered. After completing the scan, the
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Fig. 3. Parallelization model for connected components labeling on the IBM Cell BE

equivalent label pairs are sorted into equivalence classes and a unique label is
assigned to each class. In the final step, a second scan is made through the image,
during which each label is replaced with its associated equivalence class label.

The proposed CCL parallelization approach for the Cell architecture belongs
to the class of divide-and-conquer algorithms. The PPE runs the main process
which divides the image into multiple regions and allocates the labeling task to
multiple threads running on SPE’s then merges the results from each SPE to
generate the final label across the entire image. Each SPE performs DMA data
loading from the system memory and labels the allocated region independently.
The data can be partitioned into blocks of rows, columns or tiles. Dividing
the image data into tiles would increase the number of cases required for the
algorithm to handle during merging. Division of the image into blocks of columns
allows only one row per DMA transfer requiring a list of DMA request for fetching
the entire data. Therefore, dividing the image into blocks of rows is preferred
because a bulk of data (several rows) can be transferred per DMA request issue.
Some components may span multiple regions, so to ensure that such components
get a correct equivalence label in the merge step, each region allocated to one
SPE has just one overlapping row with top and bottom adjacent regions. Figure 3
shows the main phases of our parallelization approach.

The resultant array of local labels within each region is put back into main
memory through DMA store operation. The PPE uses a list of pointers Region[i]
to point to arrays that maintain the local labels with respect to SPEi. Initially,
index for each array element is the local label before equivalence resolution
whereas the array element itself is the local label after equivalence resolution
in the corresponding regions. Since the labeling starts from value 1, the array
location for index 0 is used to store the total number of distinct labels after reso-
lution of equivalence class of labels. To connect each region with its neighboring
regions to generate the actual label within the entire image, the PPE updates
the array elements in Region[i] by adding the total labels T that reached at the
end of Region[i−1]. Figure 4 depicts the an example of list of labels for Region[i]
which shows that local label 1, 2 and 5 are equivalent with local label 1 and their
global label within the entire image is T +1; local label 3, 4, and 6 are equivalent
with local label 2 and their global label is T +2 where T is the total labels reached
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Fig. 4. An example of list of labels in Region[i]

at the end of Region[i − 1]. While updating the labels in the global list we also
need to resolve equivalences of pixel labels for the overlapping row between re-
gions. To do this we use a list of pointers, OverlapBottom[i] and OverlapTop[i]
to store the local labels for the overlapping pixel in the bottom and the top
row respectively, of the region processed by SPEi. Now for any pixel k in the
overlapping row between regions i and i − 1, the local labels as calculated by
SPEi and SPEi−1 are stored in OverlapTop[i][k] and OverlapBottom[i − 1][k]
which should be equivalent. We use this information to resolve equivalence of
labels across different regions during merge phase of algorithm.

PPE Implementation. The part of the proposed algorithm implemented on
the PPE side is presented in Algorithm 1. In the beginning, four buffers are cre-
ated: Frame, Region, OverlapTop and OverlapBottom. These buffers are used
to store the frame pixels to be sent to the SPEs and the results obtained from
each SPE. The image is divided into N (=number of available SPE’s) regions
with an overlap of one row at the top and bottom of the region with the adjacent
region. The first region and the last region does not have any overlap at the top
and bottom respectively. Correspondingly, the address locations in the buffers
is determined and send as control block to the SPE thread. The SPE performs
DMA operations to load the input data and store the results at these locations.
PPE waits for the SPE to finish computing and notify the total number of lo-
cal labels through mailbox communication. Then it updates the labels by going
through each Region[i] one by one, adding the total labels reached till previous
region and resolving the equivalence by calling merge function.

SPE Implementation. On the SPE side, the first stage of the algorithm is
essentially like any standard sequential algorithm which scans the allocated re-
gion of the image pixel by pixel, assigning a temporary label to a new pixel
and marks the labels of connected pixels as equivalent. However, the algorithm
used to resolve the equivalence class is implemented in a way that utilizes the
SIMD instructions. The standard sequential algorithm which efficiently resolves
the equivalence class of labels using Union-Find algorithm by trying to minimize
the height of the search tree is not ideal for an SPE implementation which deliv-
ers most of its computational capacity by issuing vectorized SIMD instructions.
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Algorithm 1. Parallel Connected Components Labeling: PPE side
1: Allocate Frame,Region, OverlapTop,OverlapBottom and control block cb buffer

2: Divide image into N regions along with the overlap

3: for each SPE thread i do

4: Create thread i to run on SPE i

5: Load the control blocks cb[i] with the corresponding address location for

Frame,Region, OverlapTop,OverlapBottom buffer to the thread

6: end for

7: for each SPE thread i do

8: Get Total number of local labels from SPE i mailbox into Labels[i]

9: Wait for thread joining and destroy the context

10: end for

11: Initialize total number of labels T ← 0

12: for each region i do

13: for each label index j = 1 to Labels[i] do

14: Region[i][j]← T + Region[i][j]

15: end for

16: T ← T + Region[i][0]

17: if region is not first then

18: Call Merge(i, T, Region, OverlapTop,OverlapBottom) function to update

global labels and value of T

19: end if

20: end for

The choice of an algorithm for implementing an application on SPE depends
more on how the operations can be grouped for issuing in SIMD fashion to
utilize the 128-bit SIMD units which can operate on 16 8-bit integers, eight 16-
bit integers, four 32-bit integers, or four single precision floating-point numbers
in a single clock cycle. Hence, we choose an alternative algorithm that resolves
equivalences by expressing equivalent relations as a binary matrix and apply the
Floyd-Warshall algorithm to obtain transitive closure as shown in Algorithm 2.
An interesting point to note in this algorithm is that although it takes O(n3)
OR operations, these can be implemented very efficiently on SPE’s using SIMD
bitwise OR operations reducing approximately 16 separate OR operations to one
packed OR operation. The corresponding vectorized code on SPE side follows:

Listing 1.1. SIMDized SPE Code for Equivalence-Class Resolution

for ( j =1; j<n ; j++){
for ( i =1; i<n ; i++){

i f (T[ i ∗n+j ]==1){
vec uchar16 ∗ v1=(vec uchar16 ∗) &T[ i ∗n ] ;

vect uchar16 ∗ v2=(vect uchar16 ∗) &T[ j ∗n ] ;

for ( k=1;k<s i z e /16 ; k++){
v1 [ k]= spu or ( v1 [ k ] , v2 [ k ] ) ; }

} } }
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Algorithm 2. Floyd-Warshall Algorithm for Equivalence Resolution of Classes
Start with T ← A

n← no.oflabels

for each j from 1 to n do

for each i from 1 to n do

if T (i, j) = 1 then

for each k from 1 to n do

T (i, k) = T (i, k)ORT (j, k)

end for

end if

end for

end for

Due to memory constraints on the local store, only a portion of the image data
can be brought into the local store at a time. This required the implementation
to handle the spatial dependancy on the previous row pixel, whenever a new
block of rows is fetched. This was done by using two arrays OverlapTop and
OverlapBottom to store the labels of the pixels in the top and bottom row
for the current block of rows. The bottom row from the previous block of rows
needs to be combined with the first row from the next block to check pixel
connectivity; likewise the OverlapBottom array for the current block of rows is
updated to propagate information to the next block of rows. Finally when the
scan is complete, OverlapTop and OverlapBottom arrays are sent to the PPE
for use in merging labels in the adjacent block regions. The SPE also sends out
the array of labels after resolving label equivalences in the buffer Region[i].

5 Experimental Results

We evaluated and measured the execution time of our implementation of morpho-
logical processing and connected components labeling on the SONY PS-3 which
has only six active Cell SPE processors out of eight. In our experiments with
morphological processing, we compared our performance with that reported in
Cell OpenCV.The experiment was conducted by using all the 6 SPE’s and vary-
ing the size and shape of the structuring element. Table 1 shows the measured
execution time of one dilation or erosion operation averaged over 10 executions
when the input image size is 1024× 768. The original code implemented only on
the PPE represents the sequential performance baseline and the optimized code
implemented on the SPEs represents the parallel performance achieved on the
multicore Cell.

An interesting point to note is that for a given size of structuring element,
regardless of the structuring element shape our implementation has roughly con-
stant cost, whereas the sequential and OpenCV implementations become signif-
icantly slower as reflected in Table 1. This is because our representation of the
structuring element uses the same number of bits for a given window size irre-
spective of shape which has a dramatic impact on the morphology computation
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Table 1. Comparison of execution time of one Erosion/Dilation operation and showing

speed up with respect to the sequential implementation

Structuring PPE original Proposed SPE Cell OpenCV

Element optimized code(ms) code performance (ms)

Size Shape Time (ms) Speedup Time (ms) Speedup

7 x 7 Ellipse 89.806 0.311 289.6 0.973 92.4

5 x 5 47.74 0.290 164.6 0.562 84.9

3 x 3 16.324 0.261 62.5 0.308 52.9

7 x 7 Rectangle 24.235 0.310 78.2 0.337 71.9

5 x 5 18.782 0.280 67.1 0.289 64.9

3 x 3 14.341 0.260 55.2 0.276 51.9

for elliptical structuring elements. As shown in Table 1, our implementation suc-
cessfully achieved very high speed up ratios (ranging from about 55 times to
290 times faster for different workload sizes) outperforming the reported Cell
OpenCV benchmarks. The speedup increased for larger sized structuring ele-
ments i.e., as the amount of computation increased.

For evaluating our implementation of the connected components labeling algo-
rithm, we compared the performance with different versions of the sequential and
parallel code.We implemented sequential code usingUnion-Find algorithm(called
sequential UnionFind) and Floyd-Warshall algorithm (called sequential FW )
for execution only on the PPE. The experimental results for proposed parallel
connected components labeling algorithm are presented with and without
SIMD instructions for resolution of equivalence class labels, called
parallel CCL and parallel CCL SIMD respectively,with execution on PPEand
all 6 SPE’s. Figure 5 shows the results for four different implementations of the
CCL algorithm on different sized images, with the number of regions set to 250
and the total amount of foreground pixels set to 30% for all images. It was ob-
served that sequential FW gave better performance than sequential UnionFind
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Fig. 6. Variation in parallel CCL performance across different number of SPEs

probably because branch instructions and recursions in sequential UF code are
not efficiently supported for execution. The average speedup for the parallel im-
plementation without using SIMD instructions is about 2 times, increasing to 8
times with SIMD instructions. Figure 6 shows how the parallel performance scales
as the number of SPES is varied. It can be observed that the execution time for
the parallel implementation without SIMD instructions is greater than the serial
execution time up to 3 SPEs due to the overhead of thread creation, data commu-
nication, merging the results, etc. which does not scale up linearly for a low number
of SPE cores. Moreover the variation is not smooth as the total time is bounded
by the maximum of the execution time over all SPEs. By varying the number of
SPE’s, the data partitioning area/boundary changes, which can cause increase or
decrease in the number of regions and foregrounds pixels to be processed by any
SPE depending on the distribution pattern in the image. This also explains the
unexpected increase in the execution time for 6 SPE’s as compared to 5. However,
the optimized performance using SIMD instructions is always superior to the se-
quential version and scales up consistently with increasing number of SPE’s.

6 Conclusions

This paper describes parallel algorithms for binary image morphology and con-
nected components labeling suitable for SPMD multi-core architectures such as
the Cell processor. The binary morphology operations were optimized for execu-
tion on the Cell SPE by representing each pixel as a single bit (packed into bytes)
and utilizing bitwise comparison using AND/OR SIMD operations to process
128 pixels simultaneously. Novel bit level data access and alignment techniques
for Cell BE were proposed in this context. The parallelization approach for the
proposed CCL Cell implementation required a customized data partitioning and
merging algorithm split between the SPEs and the PPE respectively using a fast
SIMD version of the Floyd-Warshall equivalence resolution algorithm that was
superior to the standard Union-Find search algorithm. Our implementation us-
ing 6 SPEs achieves a speedup of up to 290 times for processing erosion/dilation
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operation using 7×7 pixel-sized elliptical structuring element with input images
of 1024× 768 and a speed up of about 8 times for connected components label-
ing on input images of 1920× 1080 with 250 regions and 30% foreground pixels.
Our future work will examine implementations on other multi-core architectures
like GPUs as well as parallelizing other video processing tasks like normalized
cross-correlation for image registration.
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