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Abstract. Recently, Van Den Boomgaard and Van De Weijer have pre-
sented an algorithm for texture analysis using robust tensor-based esti-
mation of orientation. Structure tensors are a useful tool for reliably esti-
mating oriented structures within a neighborhood and in the presence of
noise. In this paper, we extend their work by using the Geman-McClure
robust error function and, developing a novel iterative scheme that adap-
tively and simultaneously, changes the size, orientation and weighting of
the neighborhood used to estimate the local structure tensor. The itera-
tive neighborhood adaptation is initialized using the total least-squares
solution for the gradient using a relatively large isotropic neighborhood.
Combining our novel region adaptation algorithm, with a robust tensor
formulation leads to better localization of low-level edge and junction
image structures in the presence of noise. Preliminary results, using syn-
thetic and biological images are presented.

1 Introduction

Structure tensors have been widely used for local structure estimation [1, 2, 3],
optic-flow estimation [4,5] and non-rigid motion estimation [6]. Robust statisti-
cal estimators have been shown to provide better results when compared with
traditional least-squares based approaches [7]. In our work on motion analysis
using biological image sequences [6,8],we have reported the advantages of using
structure tensors for segmentation. This is due to the fact that smoothing is
minimized in the direction of the orientation vector, resulting in features that
are less blurred at object discontinuities.

Combining robust estimators with structure tensor-based orientation esti-
mation is a recent development that holds promising potential to improve local-
ization accuracy in the presence of noise. Boomgaard and Weijer [2] apply ro-
bust tensor-based estimation for texture analysis and boundary detection while
demonstrating the limitations of a total least-squares based approach. Robust
estimators are computationally more expensive than their least-squares coun-
terparts. An iterative approach is required to solve a robust structure-tensor
matrix, as it becomes non-linearly dependent on the orientation of the patch [2].
However, robust structure tensors significantly improve orientation estimates.
Instead of using a fixed local neighborhood, an adaptive area for integration has
been shown to be beneficial for optic-flow estimation [5].
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A spatially varying Gaussian kernel that adjusts to local image structure,
size and shape is presented in this paper. We also show how this kernel can be
efficiently embedded in the fixed-point iteration scheme proposed by Boomgaard
and Weijer [2]. In addition, we also investigate the use of the Geman-McClure
robust error function which is experimentally shown to yield improvements in
localization of low-level image structures.

The paper is organized as follows. In Section 2, we discuss mathematical
concepts associated with 2D structure tensor estimation. Section 3 describes
our proposed adaptive spatially varying Gaussian kernel algorithm. Section 4
presents some results and discussion when using our algorithm on synthetic and
biological images. A conclusion is provided in Section 5.

2 2D Structure Tensor Based Orientation Estimation

Let v(x) be the true gradient of an image patch Ω(y), centered at x. The norm
of the error vector between the estimated gradient g(y) at location y and v(x)
is given by e(x,y) as

||e(x,y)|| = ||g(y) − (gT(y)v(x))v(x)|| (1)

This can also be seen in Fig. 1. For clarity, we omit the positional arguments
in some instances. In order to estimate v, we will minimize an error functional
ρ(||e(x,y)||2) integrated over the image patch Ω, subject to the condition that
||v|| = 1 and ||g|| = 1 (as these are direction vectors).

The least-squares error functional is ρ(||e(x,y)||) = ||e(x,y)||2 and the error
over the image patch eLS can be written as,

eLS(x) =
∫
Ω

ρ(||e(x,y)||2)W (x,y) dy (2)

On simplifying this expression, we obtain

eLS =
∫
Ω

(gTg)W (x,y) dy −
∫
Ω

(vT(ggT)v)W (x,y) dy (3)

Here, W (x,y) is a spatially invariant weighting function (e.g., Gaussian) that
emphasizes the gradient at the central pixel within a small neighborhood, when
evaluating the structure tensor.

Minimizing eLS with respect to v, subject to the condition that ||v|| = 1, is
equivalent to maximizing the second term of Eq. 3. Using Lagrange multipliers,
we can write this criterion as

ELS(x,y) = vT (
∫
Ω

(ggT)W (x,y) dy) v + λ(1 − vTv) (4)

Differentiating ELS(x,y) to find the extremum leads to the standard eigenvalue
problem for solving for the best estimate of v, given by v̂.

J(x, W ) v̂ = λ v̂, (5)
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Fig. 1. Gradient and edge orientations of
a pixel located in an ideal edge
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Fig. 2. Plot of Error Measures. m2 = 0.5
for robust error measures.

For clarity, we replace v̂ with v in the remaining part of the paper.
In Eq. 5,

J(x, W ) =
∫
Ω

(ggT)W (x,y) dy

is the least-squares structure tensor at position x using the weighting kernel W .
The maximum eigenvector solution of Eq. 5 gives the least-squares estimate for
the gradient at pixel x using the surrounding gradient information. Although
v⊥(x) could be determined using the minimum eigenvector, it should be noted
that for an ideal edge, the smaller eigenvalue will be zero. Hence it is numerically
more reliable to estimate the maximum eigenvector.

Unlike the least-squares (or quadratic) error measure, robust error measures
are noise tolerant by imposing smaller penalties on outliers [7]. In this paper,
we use the Geman-McClure robust error function [7], instead of the Gaussian
robust error function used in [2]. The Geman-McClure robust error function is
defined as,

ρ(||e(x,y)||, m) =
||e(x,y)||2

m2 + ||e(x,y)||2 = 1 − m2

m2 + ||e(x,y)||2 (6)

where, m is a parameter that determines the amount of penalty imposed on
large errors. The Gaussian robust error function is a special case of the Leclerc
robust error function [7, p. 87, Fig. 29],

ρ(||e(x,y)||2, m, η) = 1 − e
− ||e(x,y)||2

(η m)2

with η2 = 2. Fig. 2 shows that both robust error measures ‘clamp’ the influ-
ence of large outliers to a maximum of one, whereas the quadratic measure is
unbounded. The Geman-McClure function clamps the error norm more grad-
ually, when compared with the Leclerc function. Moreover, we experimentally
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obtained improved results when using the Geman-McClure function than with
the Leclerc function.

Using Eq. 6, the error function to be minimized can be written as

eGM =
∫
Ω

W (x,y) dy −
∫
Ω

m2

(gTg − vT(ggT)v + m2)
W (x,y) dy (7)

Minimization of eGM , subject to the constraint that ||v|| = 1, is equivalent
to maximizing the second term of Eq. 7 within the region Ω. Using Lagrange
multipliers, this can be written as follows,

EGM (x,y) =
∫
Ω

m2

(gTg − vT(ggT)v + m2)
W (x,y) dy + λ(1 − vTv) (8)

Differentiating EGM (x,y), with respect to v, and setting it to zero gives

J(x,v,W )v = λv where, (9)

J(x,v,W ) =
∫
Ω

m2

(gTg − vT(ggT)v + m2)2
(ggT) W (x,y) dy (10)

is the Geman-McClure robust structure tensor.
The following iterative equation,

J(x,vi, W )vi+1 = λvi+1 (11)

is a fixed-point functional iteration scheme for numerically solving (λ,v) in Eq.
9 that usually converges to a local minimum [2]. Several convergence criterion
can be used. Some of them include ||vi+1 − vi|| < ε, Tr(J(x,vi, W ) < ktrace (a
trace threshold), and the size of W (for which we refer the reader to the next
section). The total least-squares solution is used to initialize the iterative process
in Eq. 11.

3 Spatially Varying Gaussian Kernel Adaptation

The structure tensor estimates in the neighborhood Ω can be weighted to in-
crease the influence of gradients close to the central pixel and less influence from
the surrounding region. A soft Gaussian convolution function was used in [2].
In this work, we propose a spatially varying kernel, W (x,y), that is a Gaussian
function with adaptive size and orientation within Ω. The neighborhood Ω is
initialized as a circular region and subsequently adapted to be an oriented el-
liptical region. Spatially varying adaptation of the kernel (local neighborhood
shape and coefficients) is beneficial for improving the estimation of oriented im-
age structures. When computing the structure tensor at a pixel located on an
edge, it would be beneficial to accumulate local gradient information along a
thin and parallel region to the edge. At the same time, influence of local gradi-
ents parallel to the gradient at the pixel should be minimized. Such a strategy
would lead to an improved estimate of the gradient. A neighborhood where two
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Fig. 3. The first three steps of the adaptive tensor algorithm at an ideal edge. Ωi(y) is
the local neighborhood, [λ1

i , λ2
i ] the eigenvalues and [e1

i , e2
i ] the eigenvectors at the ith

iteration step. R0 is the radius of the initial (circular) local neighborhood while [R1
i+1,

R2
i+1] are the semi-major and semi-minor axes of the new local neighborhood at the

(i + 1)th iteration step. Adaptation updates for region size and orientation are shown
in Eqs. 13 and 14. Ωi(y) is initially circular and subsequently becomes an oriented
elliptical region.

or more edges meet is referred to as corners. For localizing such regions, it would
be beneficial to select a region that is very small. The proposed adaptive struc-
ture tensor algorithm describes the approach by which appropriate small regions
can be derived.

Fig. 3 shows the adaptive algorithm at an ideal edge. In this figure, the
dashed-line elliptical region is oriented along the gradient while the solid-line
elliptical region (that is scaled and rotated by 90◦) is oriented along the edge.
The spatially varying kernel Wi(x,y) that is used with Eq. 10 is defined as

Wi(x,y) = K e−( 1
2 (y−x)T UT

i−1 Λ−2
i Ui−1 (y−x))

Λi =
[√

2R1
i 0

0
√

2R2
i

]
(12)

where K is a scaling factor associated with the Gaussian function. We initialize
the kernel W0(x,y) as an isotropic Gaussian with R1

0 = R2
0 = R0. A fairly large

number is chosen (typically R0 = 8), in order to reduce the influence of noise
when evaluating the structure tensor. The columns of Ui are the eigenvectors
(e1

i , e2
i ), with the columns of U−1 initialized as the co-ordinate axes. Let λ1

i

and λ2
i (with λ1

i > λ2
i ) be the eigenvalues of the structure tensor J(x,vi−1,Wi)

at the ith iteration. Scaled versions of these eigenvalues are used to update the
semi-major and semi-minor axes for the (i + 1)th iteration as
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R1
i+1 =

λ1
i

λ1
i + λ2

i

R1
i and, R2

i+1 =
λ2

i

λ1
i + λ2

i

R2
i (13)

The eigenvectors obtained from the current iteration, along with (R1
i+1, R2

i+1)
are used to update the kernel as follows

Wi+1(x,y) = K e−( 1
2 (y−x)T UT

i Λ−2
i+1 Ui (y−x))

Λi+1 =
[√

2R1
i+1 0

0
√

2R2
i+1

]
(14)

This kernel is used to compute a new structure tensor J(x,vi,Wi+1) as per Eq.
10. To account for the spatially varying Gaussian kernel, Eq. 11 is modified to
the following form

J(x,vi,Wi+1)vi+1 = λvi+1 (15)

We experimentally determined that two or three iterations were sufficient to
achieve the convergence criteria presented in the previous section.

4 Results and Discussion

We demonstrate the performance of our algorithm using synthetic and bio-
logical images. Edges and junctions at which two or more edges meet (i.e.,
corners) are typical low-level image structures. Fig. 4(a) depicts a synthetic
image having different types of edges (i.e., horizontal, vertical and slanted)
and corners. Fig. 4(b) shows the least-squares estimate for the structure ten-
sor, using a circular region for W (x,y). Smeared edges and corners, that re-
sult from this process, are shown in the intensity maps of confidence measures
(Figs. 4(b), 4(e)).

The proposed (spatially varying) adaptive robust tensor method produces
better localization of edges and corners, as shown in Figs. 4(c) and 4(f). Along
ideal edges, one of the eigenvalues is nearly equal to zero. Consequently, there
would be no adaptation in the size of the kernel (Eq. 12). Thus, the improved
localization of edges in Fig. 4(c) is due to the robust component of our algorithm.
With noisy edges, however, both eigenvalues will be non-zero. Hence, both kernel
adaptation and robust estimation contribute to the improved localization of
noisy edges as shown in Fig. 4(f). At junctions, both eigenvalues are greater
than zero and can be nearly equal to each other for 90◦ corners [9, Ch. 10].
Hence, there is a nearly isotropic decrease in the kernel (Eq. 12) which leads to
improved localization of corners as seen in both Figs. 4(c) and 4(f).

We also show the effect of using different robust error measures with real bi-
ological images. Fig. 5(a) shows a Lilium longiflorum pollen tube, imaged using
high resolution Nomarski optics (diameter of pollen tube is 20 microns). These
images are used to study the movement of the tip and small interior vesicles
that actively contribute to the growth dynamics of pollen tubes [10]. Fig. 5(e)
shows a section of the Arabidopsis thaliana root from the meristem region, with
root hairs and internal cellular structures (diameter of the root is approximately
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(b) Quadratic
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Fig. 4. An ideal image and the same image corrupted with 60% additive Gaussian
noise N (0, 1). Corresponding, scaled, intensity plots of the confidence measure λ1

i −λ2
i

(i.e., converged eigenvalues) using least-squares (quadratic) and Geman-McClure error
measures are also shown. R0 = 8 (use to defined both W (x,y and Ω(y)), ktrace = 0.005
for both error measures, and the number of iterations is 8. Original image dimensions
are 262×221.

100 microns). Temporal stacks of such root images were used to automatically
compute the most spatiotemporally accurate growth profile along the medial
axis of the root, for several plant species [8]. As seen from Fig. 5(d) and 5(h),
the Geman-McClure function does a better job at detecting more salient im-
age features, such as vesicles in the pollen tubes and internal cellular structures
in the root, that are important in characterizing the physiology of biological
motions.

In a previous paper, we have presented growth characterization results using
a least-squares based robust tensor algorithm for computing velocity profiles of
root growth in Arabidopisis thaliana [8]. The accurate localization and segmen-
tation feature of the proposed adaptive robust structure tensor algorithm can
be suitably extended for computing such velocity profiles, or growth in other
biological organisms.
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(a) Lilium longiflorum

(b) Quadratic

(c) Leclerc (η2 = 2)

(d) Geman-McClure

(e) Arabidopsis thaliana

(f) Quadratic

(g) Leclerc (η2 = 2)

(h) Geman-McClure

Fig. 5. Lilium longiflorum pollen tube and meristem region of an Arabidopsis thaliana
root image, with corresponding scaled intensity plots of confidence measure λ1

i − λ2
i

(i.e., converged eigenvalues). R0 = 8 (used to define both W (x,y and Ω(y)), m2 = 0.5
and ktrace = 0.005 with a maximum of 8 iterations. Original image dimensions are
197×133 for the pollen tube and 640×480 for the root images, respectively.

5 Conclusion and Scope for Future Work

An adaptive, robust, structure tensor algorithm has been presented in this paper
that extends the robust orientation estimation algorithm by Boomgaard and
Weijer [2]. The adaptation procedure for local orientation estimation uses a
new, spatially varying, adaptive Gaussian kernel that is initialized using the
total least-squares structure tensor solution. We adapt the size, orientation and
weights of the Gaussian kernel simultaneously at each iteration step. This leads
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to improved detection of edge and junction features, even in the presence of noise.
In a future work, we intend to explore the relationship between the proposed
adaptive robust-tensor algorithm and anisotropic diffusion [11, 12].
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