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Abstract—It is estimated that less than five percent of videos
are currently analyzed to any degree. In addition to petabyte-
sized multimedia archives, continuing innovations in optics,
imaging sensors, camera arrays, (aerial) platforms, and storage
technologies indicates that for the foreseeable future existing
and new applications will continue to generate enormous
volumes of video imagery. Contextual video summarizations
and activity maps offers one innovative direction to tackling
this Big Data problem in computer vision. The goal of this
work is to develop semi-automatic exploitation algorithms and
tools to increase utility, dissemination and usage potential
by providing quick dynamic overview geospatial mosaics and
motion maps. We present a framework to summarize (multiple)
video streams from unmanned aerial vehicles (UAV) or drones
which have very different characteristics compared to struc-
tured commercial and consumer videos that have been analyzed
in the past. Using both metadata geospatial characteristics of
the video combined with fast low-level image-based algorithms,
the proposed method first generates mini-mosaics that can then
be combined into geo-referenced meta-mosaics imagery. These
geospatial maps enable rapid assessment of hours long videos
with arbitrary spatial coverage from multiple sensors by gener-
ating quick look imagery, composed of multiple mini-mosaics,
summarizing spatiotemporal dynamics such as coverage, dwell
time, activity, etc. The overall summarization pipeline was
tested on several DARPA Video and Image Retrieval and
Analysis Tool (VIRAT) datasets. We evaluate the effectiveness
of the proposed video summarization framework using metrics
such as compression and hours of viewing time.
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motion analysis; mosaicing; aerial video surveillance

I. INTRODUCTION

Unmanned aerial vehicles (UAV) are emerging as an

inexpensive and practical method of gathering high quality

geo-spatial data. UAV captured content while predominantly

visual, consists of heterogeneous data streams reflecting

the physical reality around us from a plurality of sensors

potentially including visible, infrared, multispectral, hyper-

spectral, inertial, GPS, acoustic, and other special sensors.

Innovative uses of these data streams has been considered

for a range of applications such as gaining better situational

awareness in many new domains ranging from large scale

public event surveillance like the Olympics, to ecological

and environmental mapping, urban planning, infrastructure

monitoring, agriculture and livestock monitoring, construc-

tion management, search-and-rescue, natural and man-made

disaster relief scenarios.

While it is widely acknowledged that UAV video streams

could potentially provide a wealth of information, the exist-

ing practices primarily revolve around human browsing of

the content either while the UAV is in operation or shortly

thereafter. Most of the data captured is never seriously

analyzed either from individual flights or as a corpus data

collected from sorties related to a coverage area. The deluge

of video and ancillary sensor content collected from UAV

represents an emerging wave of unstructured big data from

large enterprises for which there is a growing demand for

assistive, automated and agile data analytics (1; 2; 3; 4; 5).

These analytics are expected to enable new use cases of these

data involving planning, navigation, reaction, and interaction

capabilities in a variety of situations supporting diverse

applications in safety, security, transportation, disaster re-

sponse/recovery, energy, utility, automotive and agriculture

sectors.

Airborne video has different characteristics compared to

structured commercial (news, sports, entertainment) and

consumer videos that have been analyzed in the past. The

objective of our work is to explore analytic approaches to

robustly summarize long duration unstructured UAV video

content from multiple spatiotemporal coverage perspectives.

For example, given a corpus of UAV videos, we present

a method to summarize the geospatial area covered by the

imagery and extract activity patterns within the scene for a

quick overview to enable fast video search, filtering and re-

trieval. Unlike many other video summarization approaches,

our formulation leverages the constraints available in UAV

aerial video images to generate mini-mosaics that can be

assembled into a global meta-mosaic and deals with unique

challenges of UAV video and metadata artifacts.

Typical unstructured videos such as aerial surveillance

imaging are often first mosaiced into a common georeg-

istered orthorectified coordinate system to provide quick

look overviews or summaries. However, generating a single

global mosaic is often hampered by practical issues such

as platform motion, choosing an appropriate base-frame for
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image registration, long temporal coverage over large spatial

areas with multiple distinctive scenes, changing camera pose

and focal length, large camera or platform motion, abrupt

scene change, corrupt or inaccurate metadata, challenging

imaging conditions such as glare and self-occlusions where

the imaging platform obstructs part of the field-of-view.

These challenges make feature extraction and image match-

ing stages of image registration-based global mosaicing

methods error prone and brittle.

Instead, we propose to first construct mini-mosaics by

identifying temporal shot boundaries in unstructured video

using a fast frame histogram energy-based graph cut method

followed by feature extraction, image registration and image

mosaicing. Identifying shot boundaries enables a fast prepro-

cessing approach to chunk a long video sequence into shots

each of which has a high likelihood of generating a spatially

coherent mini-mosaic. In addition to robustness, chunking

the video sequence into shots supports parallelization of

subsequent processing stages for generating the meta-mosaic
and reduces the complexity of searching for the global align-

ment or loop closure from quadratic to linear complexity in

the number of mini-mosaics.

II. TEMPORAL VIDEO SEGMENTATION USING GRAPH

CUTS ENERGY MINIMIZATION

The graph cuts segmentation module aims to tempo-

rally segment videos into consecutive shots based on scene

changes and camera motion. Temporal video segmentation

or shot boundary detection has been widely studied for struc-

tured video analysis applications such as television broadcast

video, film production videos where there are natural shot

boundaries based on director and editor choices for story-

telling using multimediaIn our application, temporal video

segmentation is performed on aerial surveillance videos

captured from moving platforms. Temporal segmentation

constitutes the first step in our video summarization pipeline.

Spatial context (mosaic of the scene) and spatiotemporal

summary (moving objects and their tracks) are first recov-

ered at the shot or mini-mosaic level, then extended to

the entire full-length video. Temporal video segmentation

consists of three main components: (1) representation of

visual content; (2) evaluation of visual content continuity;

and (3) classification of continuity values (6). Visual content

can be represented by the image itself or by some features

extracted from the image. Once visual content is extracted,

similarity (continuity) or distance (discontinuity) between

consecutive or neighboring frames is computed. The final

step classifies the continuity or distance signal energy into

shot versus transition boundary classes. The methods used

in the process ranges from rule-based approaches to various

machine learning methods (6).

A. Problem Formulation

We developed a discontinuity-based temporal video seg-

mentation module. Visual content is represented with color

histograms. A one dimensional discontinuity signal X is

constructed as differences between cumulative histograms

of consecutive frames:

Xp =
∑
b

|Hp(b)−Hp−1(b)| (1)

where Hp(b) denotes bin b of the cumulative histogram H
of frame p. Shot boundary detection can then be formulated

as an energy minimization problem using graph cuts (7) in

order to label each video frame as shot versus transition. The

temporal video segmentation problem is formulated using

the (dissimilarity-based) energy function:

E(I) =
∑
p

Dc(Ip, Lp) +
∑
p

∑
q

Vpq(Lp(Ip), Lq(Iq)) (2)

where D(Ip, Lp) denotes the cost of assigning label Lp to

frame Ip and Lp(Ip) and Lq(Iq) are the labels corresponding

to image frames Ip and Iq respectively, in the video.

The first term Ed =
∑

p Dc(Ip, Lp) is known as the data

term. It measures the cost of assigning frame Ip to label

Lp. It ensures that the current label Lp is coherent with

observed frame data Ip. The cost to assign frame Ip to label

Li is computed as:

Dc(Ip, Li) = (Xp − Ci)
TΣ−1

i (Xp − Ci) (3)

where Ci is cluster center for cluster i, Σi is covariance

matrix for cluster i, and Xp is the frame-level feature vector

described in Eq. 1. The data term penalizes associating a

specific frame within a given shot based on the dissimilarity

in appearance between the frame-level histogram compared

to the average shot-level histograms measured using the

Mahalanobis distance in Eq. 3 with appropriately estimated

pairwise correlations.

The second term ER =
∑

p

∑
q Vpq(Lp(Ip), Lq(Iq)) is

known as the regularization or smoothness term. It measures

penalty of assigning frames Ip and Iq to labels Lp and Lq .

It ensures that the overall labeling is smooth. It penalizes

neighboring labels that are too different using the difference

measure given by:

Vpq =

{
Diff(Xp, Xq), if |p− q| < sliding window size

0, otherwise
(4)

where Xp is the cumulative histogram of frame p and

The data and regularization terms are calculated in the

following manner. The data is clustered into k = 3 clusters

or labels for no-transition, gradual-transition, and abrupt-

transition categories. Regularization uses a real positive

sparse matrix, V of size (#frames)× (#frames), mostly

consisting of zeros with the exception of a narrow band
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around diagonal corresponding to temporally neighboring

frames.

The formulated energy is minimized by a series of graph

cuts using alpha-expansion and alpha-beta swap algorithms

as described in (7; 8). Use of graph cuts rather than rule-

based thresholding methods enables incorporation of global

information to the decision process, reduces sensitivity to

threshold selection, and regularizes the output. This makes

the temporal video segmentation process more robust against

instantaneous errors (i.e. corrupt frames), abrupt illumination

changes, inaccurate or out-of-sync metadata or noise. Once

shots and transitions are identified, frames belonging to the

same shot are registered to a common coordinate system

and mini-mosaics that summarize geospatial scene content

are constructed. Moving objection and tracking are also done

at shot level to generate a dynamic summary of the activities

occurring within a shot.

III. MINI-MOSAICS USING IMAGE REGISTRATION

Once shot boundaries are identified using the graph cuts

video segmentation approach described in the previous sec-

tion, we can register frames to each other within the group

of frames for a given temporal segment of video. First

feature correspondences are established, then we compute

the homography relating the two coordinate systems between

a given frame in the video segment and the base image

frame selected for the mini-mosaic (usually the first frame

in the video segment). This enables image I(X, t) to be

mapped into the coordinate system of the base frame for a

given video segment I(X, t−k). Note that we are interested

in finding a good solution for the homography, and not
on finding the unique solution for the true 3D camera

motion (see (9) for the alternative approach of accurately

estimating camera pose), as our goal here is mainly to

compensate for and remove the effects of the background

or (dominant) ground plane motion. Since UAV imagery can

have significant perspective effects a projective mapping will

be more accurate than an affine transformation.

The projective mapping function or homography uses

the coordinates of the feature correspondences to find a

weighted least squares solution for the transformation matrix

coefficients (10). The homography is used to warp the image

at time t into the coordinate system of the base frame at time

(t− k). The two images, I(x, y, t) and I(x, y, t− k) can be

related by a projective transformation (or homography) when

the scene points are approximately planar. Let the image

coordinates of the same scene point lying on the plane π
be P (x, y) and P ′(x′, y′), in the view at time t and (t− k)
respectively. The two views can be related by the following

homogeneous relationships:

x′ =
ax+ by + c

gx+ hy + w
, y′ =

dx+ ey + f

gx+ hy + w
(5)

The homography can be written in matrix notation as:⎡
⎣ x′

y′

w′

⎤
⎦ =

⎡
⎣ a b c

d e f
g h w

⎤
⎦
⎡
⎣ x

y
1

⎤
⎦ (6)

P ′ = A(t−k,t)P (7)

This transforms position P observed at time t, to position

P ′ in the coordinate system at time (t−k) via the projective

transformation matrix (a backward transformation from time

t to time (t− k)). Usually we assume w = 1 in matrix A.

Suppose we are given three images, I(x, y, t − 2),
I(x, y, t−1), I(x, y, t) with corresponding planar points, P ′′,
P ′, P and homography transformation matrices A(t−1,t) and

A(t−2,t−1) that projectively maps t to (t − 1) (i.e., Frame

2 to Frame 1) and (t − 1) to (t − 2) (i.e. Frame 1 to

Frame 0), respectively. Without loss of generality we assume

for simplicity of notation that the images are sequentially

sampled at one unit time intervals, t, (t − 1), and (t − 2).
The two corresponding projective transformations are,

P ′ = A(t−1,t)P and P ′′ = A(t−2,t−1)P
′ (8)

and the composite or cumulative projective transformation

relating pixels in frame t to pixels in frame (t − 2) (i.e.,

pixels in Frame 2 to pixels in Frame 0), as the product of

two homographies or projective maps/transformations:

P ′′ = A(t−2,t−1)A(t−1,t)P (9)

In the general case, mapping pixel positions from frame t
to corresponding pixel positions in the coordinate system of

frame (t− k), we have:

P (t− k, t) = A(t−k,t)P (t, t) (10)

A(t−k,t) = A(t−k,t−k+1) ·A(t−k+1,t−k+2) · · · (11)

A(t−2,t−1) ·A(t−1,t)

We also need to specify the coordinate system in which

we reference or measure a pixel’s position. Since the prime

notation is limited, P (t−k, t) denotes pixel position/geome-

try from image I(x, y, t) mapped to the coordinate system of

image frame I(x, y, t − k) and P (t, t) is the pixel position

measured in its original coordinate system I(x, y, t). The

elements of matrix A in Eq. 6 and 7 can be solved using the

well known normalized DLT algorithm. We use RANSAC

to obtain a robust estimate of the homography parameters.

IV. EXPERIMENTAL RESULTS

We tested our geospatial mosaicing and video summa-

rization pipeline using the DARPA VIRAT video sequences

(11) as in (4). We applied the proposed graph cuts based

temporal video segmentation algorithm to VIRAT video

09152008flight2tape1 6 for which Figure 1 shows the re-

sults compared to manual shot boundary detection. Manual
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Figure 1: Temporal video segmentation results. Shot boundaries
shown as blue lines (manual ground-truth) with occlusions marked
as black plus signs, based on manual inspection of the video
(Row 1). Metadata-based video shot boundaries based on FOV
change, Overlap Ratio with the discontinuity ground truth marked
as black circles (Row 2). Temporal discontinuity signal constructed
as cumulative histogram differences between consecutive frames
(Row 3). Flux trace temporal discontinuity signal (2) (Row 4). The
Average Absolute image Difference (AAD) temporal discontinuity
signal post registration (Row 5). Graph cut based temporal video
segmentation shot boundaries using histogram difference signal
where intra-shot frames are marked zero and shot transitions are
marked two (vertical dark blue bars in Row 6).

results are obtained by visual inspection for the VIRAT

videos using our video visualization and annotation tool

Kolam (12). Geospatial coverage maps of the VIRAT video

sequence in Figure 1 is shown in Figure 2 where different

scenes covered by the video appear as bright patches.

We determine the first and the last frames of each video

segment based on the shot detection algorithm and then

estimate all of the homography transformation parameters

between each pair of adjacent frames. To create a mini-

mosaic for each segment, we align every frame to the first

baseframe within the segment. The global transformation

from the kth frame to the first frame of the segment is

the cascade of the inverse adjacent transformations between

the kth and first frames. To avoid a blurred mosaic caused

by parallax, when each frame is transformed to the mosaic

coordinate system, we only update the uncovered area.

Figure 3 shows 12 mini-mosaics for VIRAT video Tape1 6.

Aerial video can use interlaced frame capture which

0 500 1000 1500 2000 2500
0

200

400

600

800

1000

1200

1400

1600

1800

2000
All miniMosaics

1151
115115

165 215

265
315

365418418
468
518568

618
668
718
768
818868918

9681018
1068

11181168
1218

1268
13301330

1380
14681468

1518
15681618

1668

1718

176818181868
19181968

2018
206821042104

21762176
2226

2276

2326
23762426
2476

2526

2576
2626

2676272627762826
2876

293529352985

3035

30763076
3126

3176

3226
327633263376

3426347635263576
3626

3676
3726
3776

3826

387639263976402640814081
413141814231428143314381443144814531458146314681473147814831

4881493149815031
51135113

5163

5213
52635313536354135463551355635613566357135763

581358635913
5963
6013

6063
6113

6163
6213

6263
6313

64606460
6510

6560
66106660

67106760
681068606910

696070107060

711071607210

7260
7310
7360

7410746075107560
7610

7660
771077607810

78607910
796080108060

81108160
82108260

831083608410
8460

8510

8560 8610

8660

8710
8760

8810

8860

Figure 2: Geospatial coverage (top) and persistence map (bottom)
for VIRAT aerial video surveillance sequence Tape1 6. Color at
location P (x, y) corresponds to the number of frames in which
that location was visible in the video.

Figure 3: Mini-mosaic stitching results (using interlaced
frames) corresponding to shots shown in Fig. 1 for video
09152008flight2tape1 6.

adversely affects the registration and mini-mosaic creation

process. Table I shows the mini-mosaic numbers in four

different VIRAT video sequences. The fourth column is the

number of focal-length changes extracted from the video

metadata stream. The table shows that registration is more

reliable and robust using deinterlaced images which in

turn reduces the total number of mini-mosaics; the num-

ber of mini-mosaic is closer to the metadata which also

corresponds to the manual ground truth. In VIRAT video

09152008flight2tape1 1 the set of frames from 1509 to 4146

are split into seven mini-mosaics using interlaced sequences

but are automatically combined into a single large mosaic

after deinterlacing. In video 09152008flight2tape1 7, the
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number of mini-mosaics is larger because the field-of-view

of the camera is partially blocked by the body of UAV

in some video segments which affects image registration.

When a UAV operator changes the camera’s angle (pan and

Table I: Deinterlacing frames reduces the number of mini-mosaics
generated in four VIRAT video sequence examples.

tilt), the field of view (FOV) might be blocked by some

portion of UAV itself (wheels, wings). This self-occlusion

would cause black regions appear and original details miss

in the mosaic, which can be seen in the Figure 4 (left). We

propose a method to mitigate such stitching issues due to

self-occlusion artifacts. We notice that self-occluded areas in

the FOV are often smooth and dark which can be identifeed

using a superpixel approach (13). Four properties of each

superpixel are calculated: mean of the RGB values and

standard deviation of the gradient magnitude, each with

corresponding thresholds. Superpixels that satisfy all of the

constraints are selected and these regions will be used to

create a mask. To make the mask smoother and remove

holes, two morphological operators are applied (closing and

dilation). After this, the mask is used to filter out dark pixels

and only the unmasked areas are used to create the mosaic.

Figure 4 (right mosaic) shows the improved result with self-

occluded regions replaced with informative pixels.

Figure 4: Improved mosaicing results with significantly reduced
artifacts before (left) and after (right) removing local self-occluding
regions from overlapping frames.

V. CONCLUSIONS

In this work, we have presented a novel approach to

summarize the area covered by UAV videos. By selecting

appropriate representation, we temporally segment the video

into segments by assessing the visual content continuity.

Experimental results on DARPA VIRAT dataset suggest that

our segmentation approach is effective when compared with

manually annotated ground truth data. We suggest an effec-

tive representation referred to as coverage map for coverage

summarization. While our results are very encouraging, there

are a number of unaddressed challenges and further opportu-

nities for improving the aerial video summarization process.

We plan to rigorously quantify strengths and limitations

of our approach in the context of other available UAV

datasets. We are also exploring refining our spatiotemporal

summarization framework to include summaries of events in

UAV videos.
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