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Abstract

In this paper, we present a moving object detection sys-
tem named Flux Tensor with Split Gaussian models (FTSG)
that exploits the benefits of fusing a motion computation
method based on spatio-temporal tensor formulation, a
novel foreground and background modeling scheme, and a
multi-cue appearance comparison. This hybrid system can
handle challenges such as shadows, illumination changes,
dynamic background, stopped and removed objects. Exten-
sive testing performed on the CVPR 2014 Change Detection
benchmark dataset shows that FTSG outperforms state-of-
the-art methods.

1. Introduction

In real world monitoring applications, moving object de-

tection remains to be a challenging task due to factors such

as background complexity, illumination variations, noise,

and occlusions. As a fundamental first step in many com-

puter vision applications such as object tracking, behavior

understanding, object or event recognition, and automated

video surveillance, various motion detection algorithms

have been developed ranging from simple approaches to

more sophisticated ones [11].

In this paper, we present a novel hybrid moving ob-

ject detection system that uses motion, change, and appear-

ance information for more reliable detections. The main

contributions of this paper are: (i) A motion computation

method based on spatio-temporal tensor formulation named

flux tensor; (ii) A novel split Gaussian method to separately

model foreground and background; (iii) A robust multi-cue

appearance comparison module to remove false detections

due to illumination changes, shadows etc. and to differ-

entiate stopped objects from revealed background by re-

moved objects. Our method can handle shadow, illumina-

tion changes, ghosts, stopped or removed objects, some dy-

namic background and camera jitter while still maintaining

a fast boot-strapping. Our method outperforms most well

known techniques on moving object detection. As of sub-

mission date of this paper, our results outrank submissions

to CVPR 2014 change detection challenge [7] in overall

ranking that combines eleven categories.

2. System Overview

Figure 1 shows our system flow diagram. Flux Tensor

with Split Gaussian models (FTSG) consists of three main

modules described below:

a) Pixel level motion detection module: two complemen-

tary methods, flux tensor based motion detection and

split Gaussian models based background subtraction,

run separately on input images and produce foreground

detection results.

b) Fusion module: flux tensor based and split Gaussian

based detection results are fused using a rule-based

system to produce improved results that reduce errors

due to noise, illumination changes, and halo effects.

c) Object level classification module: removed and

stopped objects are handled. Edges of the static ob-

jects in foreground detection mask are compared to the

edges of the corresponding object in current image and

background model using chamfer matching.

Detailed descriptions of each component are given in the

following sections.

3. Flux Tensor based Motion Detection

Motion blob detection is performed using multichannel

version of flux tensor method [3] which is an extension

to 3D grayscale structure tensor. Using flux tensor, mo-

tion information can be directly computed without expen-

sive eigenvalue decompositions. Flux tensor represents the

temporal variation of the optical flow field within the local

3D spatiotemporal volume. In expanded matrix form, flux
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Figure 1. System flow diagram for static and moving object detection

using flux tensor with split Gaussian models. The system is composed of

three major modules.

tensor is written as:
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The elements of the flux tensor incorporate information

about temporal gradient changes which leads to efficient

discrimination between stationary and moving image fea-

tures. Thus the trace of the flux tensor matrix which can be

compactly written and computed as,

trace(JF) =

∫
Ω

|| ∂
∂t
∇I||2dy (2)

can be directly used to classify moving and non-moving

regions without eigenvalue decompositions. Flux tensor

based moving object detection has been successfully used

in both surveillance [4, 10] and biomedical video analysis

applications [9, 8].

4. Split Gaussian Models
Gaussian models have been widely used in background

subtraction methods. Mixture of Gaussians can efficiently

represent multimodal signals, which makes them suitable

for background modeling and subtraction. We adopt mix-

ture of Gaussians as our background model. However,

unlike MoG in [12] where background and foreground

are blended together into a single model with fixed num-

ber of Gaussians, we model foreground and background

separately, and use adaptively changing number of Gaus-

sians for the background model. This simplifies the back-

ground/foreground classification step, prevents background

model from being corrupted by foreground pixels, and also

provides better adaptation for different background types

(static vs. dynamic backgrounds). This approach has fast

boot-strapping, adaptive updating and complex background

environment modeling capabilities.

Background model: We use a mixture of K Gaussians to

model the background where K is a spatially and tempo-

rally adaptive variable. Every new pixel value, It(x, y), is

checked against the existing K Gaussian distributions. A

match to a Gaussian is defined as pixel values within Tb

standard deviations of the mean :

Dmin(x, y) = min
i∈K

max
j∈C

((It(x, y)− μi,j)
2 − Tb · σ2) (3)

A pixel is labeled as foreground if it does not match any of

the Gaussians in the background model:

FB(x, y) =

{
1, if Dmin(x, y) > 0
0, otherwise

(4)

Tb is a fixed threshold and stands for number of standard

deviations, and σ =
∑k

i ωiσi. For each pixel, there will be

K×C Gaussian models where C is the number of channels,

e.g. 3 for RGB. For simplicity, all the channels share the

same variance σ and weight ω.

Foreground appearance model: We use a single Gaussian

to model the foreground. Foreground appearance model

(shown in Figure 1, module 1) is used to distinguish static

foreground (stopped object and revealed background) from

spurious detections due to illumination changes and noise

within ambiguous regions, Famb(x, y) where FF = 0 and

FB = 1 (detected as background by flux but as foreground

by background subtraction shown as ambiguous foreground
in Figure 1 module 2). Static foreground regions FS are

identified within ambiguous detections Famb using fore-

ground model:

FS(x, y) =

⎧⎨
⎩
1, if Famb(x, y) = 1 and

It(x, y)− μf (x, y) < Tf

0, otherwise
(5)
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Model initialization: Flux tensor provides motion infor-

mation, and the fusion and classification modules greatly

reduce false positives. Therefore, the background model

can be directly initialized using the first few frames and the

foreground appearance model can be initialized to be empty.

Background model update: Common background model

update schemes can be classified as blind update or conser-

vative update [1]. Blind update, such as in MoG [12], incor-

porates all sample values into the background model, while

conservative update only incorporates sample values that

are previously classified as background. We use the con-

servative update policy for both our background and fore-

ground models. Fusion (Section 5) and object classification

(Section 6) modules considerably reduce potential deadlock

problems in conservative update where temporary detec-

tion errors may become permanent ghosts. Static back-

ground and illumination changes are updated into back-

ground model as:

μt = (1− α)Mμt−1 + αMIt (6)

σ2
t = (1− α)Mσ2

t−1 +Mα(It − μ)Tα(It − μ) (7)

ωi,t = (1− α)ωi,t−1 + αM (8)

M = (1− FB) ∪ (Famb − FS) (9)

where α is a fixed learning rate set to 0.004 and M stands

for update mask. Background revealed by removed objects

and dynamic background are incorporated to background

model as new Gaussian distributions. A new Gaussian is

initialized with a high variance and low weight, and its

mean is set to the current pixel value.

If there is a large persistent change, a new model will be

added to each pixel (i.e. in PTZ scenario [7], camera field

of view change triggers large persistent change). Existing

Gaussian models with weights less then a threshold Tl are

discarded.

Foreground model update: As in the case of the back-

ground model, a conservative update strategy is used for the

foreground model. Foreground model is only updated with

the foreground regions indicated by the inverse of the back-

ground model update mask. In order to accommodate fast

changing foreground, a high learning rate is used for fore-

ground update.

5. Fusion of Flux Tensor and Split Gaussian
Models

The goal of this decision fusion module is to exploit

complementary information from two inherently different

approaches to boost overall detection accuracy. Flux tensor

based motion segmentation produces spatially coherent re-

sults due to spatio-temporal integration. These results are

also robust to illumination changes and soft shadows due to

use of gradient based information. But since the method re-

lies on motion, it fails to detect stopped foreground objects

BG model,
Flux Tensor,
FG model

FF ∩ FB
moving

forground

FF = 1
FB = 0 Halo effect

Match with
FG model

Static fore-
ground regions

Illumination
changes

yes

no

yes

no

yes

no

Figure 2. Fusion of flux tensor and split Gaussian models. Images on the

right hand side are corresponding to those elements in the flowchart on the

left hand side. FF , FB stand for flux tensor motion segmentation mask

and split Gaussian background subtraction mask respectively.

and tends to produce masks larger than the objects. Back-

ground subtraction on the other hand can detect stopped

objects, but is sensitive to noise, illumination changes and

shadows. Here we extend flux tensor based motion segmen-

tation with split Gaussian foreground and background mod-

els to generate a more complete and accurate foreground ob-

ject detection method. Figure 2 shows fusion flow chart and

some examples of flux tensor and split Gaussian model fu-

sion results. Pixels that are detected as foreground by both

flux tensor and split Gaussian background subtraction are

classified as moving foreground objects. Pixels that are de-

tected as foreground by background subtraction only and

have a match in foreground model correspond to static fore-

ground objects.

6. Stopped and Removed Object Classification

Fusion procedure classifies both stopped objects (true

positives) and revealed background by removed objects

(false positives) as static foreground. Distinguishing these

two types of static foreground can effectively reduce the

false positive rate and tackle deadlock problem. The method

(a) Stopped object (b) Revealed background by re-

moved object

Figure 3. Classification of stopped objects vs. background revealed by

removed objects. Images on the first row from left to right are current

image, background model and foreground mask. Images on the second

row are edge maps corresponding to the regions of interest marked by red

rectangle in the images of the first row.
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used for removed and stopped objects classification is based

on [6], which basically has three steps: 1. Identify pixels

corresponding to static regions; 2. Perform edge detection

on static regions in current image, background generated

by background subtraction and foreground detection mask;

3. Perform classification based on edge matching. Figure

3 a, b show classification examples for stopped object (an

abandoned bag) and revealed background by removed ob-

ject (ghost effect due to background model initialization)

respectively. Stopped object has higher edge similarity be-

tween current image and foreground mask, while revealed

background by removed object has higher edge similarity

between background model and foreground mask.

7. Results and Analysis
The proposed flux tensor with split Gaussian models sys-

tem is evaluated using the dataset and evaluation metrics in

CVPR 2014 Change Detection challenge [7]. One fixed set

of parameters is used for all the sequences. The learning

rate α is 0.004 for background model and 0.5 for foreground

model. The matching threshold Tb in Eq. 3 is 3 and the sim-

ilarity matching threshold Tf in Eq. 5 is 20. The threshold

for flux tensor to segment moving foreground object from

non-moving background is dynamically changing accord-

ing to the number of Gaussians distributions at each pixel

location. This avoids the use of a fixed global threshold un-

like most other temporal differencing methods.

Table 1 shows the comparison result of FTSG with

state-of-the-art change detection methods. Evaluation

scores of those methods are obtained from http://www.
changedetection.net. Best result of each metric is

highlighted and in all the measures listed in Table 1. It

can be seen that FTSG outperforms all the listed methods

in five out of seven measures and has the second best score

in the remaining two measures, specificity and FPR. Table

2 shows results of the proposed approach on all eleven sce-

narios. On seven out of eleven scenarios and on the overall

evaluation FTSG outperforms not only the listed state-of-

the-art methods but also the new change detection challenge

submissions in terms of average ranking.

Figure 4 shows moving object detection results for var-

ious algorithms including proposed Flux Tensor with Split

Gaussian models (FTSG) on CVPR 2014 Change Detec-

tion dataset [7] with some typical frames selected from the

11 categories. The proposed FTSG is robust to illumination

changes (col 1), it can detect long term static objects (col

3), and it also handles dynamic background (col 2). Image

in col 4 demonstrates that FTSG can correctly identify re-

vealed background by removed object, and image in col 5

shows that FTSG can adapt to scene changes quickly (sud-

den change of camera focus).

A prototype of the proposed system implemented in

Matlab runs at 10 fps for a 320× 240 video. Matlab imple-

GT

KNN[14]

GMM1[12]

KDE[5]

MahaD[2]

GMM2[13]

EucD[2]

FTSG

Figure 4. Selected foreground detection results from six state-of-the-art

change detection algorithms and our FTSG method on CVPR 2014 Change

Detection dataset [7]. See Table 1 for quantitative results.

mentation of Flux tensor only detection runs at 50 fps. Flux

tensor computation can be easily parallelized for different

architectures as in [10] because of the fine grain parallelism

of the filter operations.

8. Conclusion

We described a moving object detection system that

combines spatio-temporal tensor-based motion estimation

with a novel background modeling scheme. Use of tensor-

based motion segmentation results in coherent detections

robust to noise and illumination artifacts, while the pro-

posed background subtraction process handles detection of

static objects. The final multi-cue object level classification

distinguishes stopped objects from background revealed by

removed objects and thus reduces false positives. We ex-

perimentally show that the proposed system outperforms

most state-of-the-art methods on the CVPR2014 challenge

dataset[7].
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