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Abstract—Elastic body splines (EBS) belong to a family
of splines introduced for biomedical image registration. EBS
models the elastic deformation of a homogeneous isotropic
elastic body subjected to external forces. The task of interactive
image segmentation is framed as a semi-supervised interpo-
lation where the basis functions are learned using the user
provided seed points to model and predict the labels for the
unlabeled pixels. Seed points are sparse compared to other
methods that may require scribbles and regions. The spline
for interpolating labels is the EBS which we compare to our
previous work using Gaussian Elastic Body splines (GEBS) [1]
for the task of interactive image segmentation. Experimental
results show that the EBS is about 14 percent better, in terms
of accuracy, than GEBS and significantly better than random
walk and graph cut based segmentation. EBS is also 2.5 times
faster than GEBS.

Keywords-Interactive image segmentation, semi supervised
regression, elastic body splines.

I. INTRODUCTION

Image segmentation is a fundamental problem in image

processing and computer vision. The goal is to extract

regions associated with objects of interest from the given

image. Automatic segmentation methods are often employed

for the task of segmentation however these methods can

cause over segmentation and fail to produce satisfactory

result. These methods also fail in the case of complex

image scenes with weak boundary edges, foreground and

background sharing similar color distributions or textured

images. To segment a region of interest one can use manual

annotations but human ground truth annotations can be both

time consuming and expensive. Semi-automatic methods

often work well in such cases as they lie some where in

between the automatic methods and high quality manual

annotations. Semi-automatic methods use the human knowl-

edge to guide the segmentation process. As a result interac-

tive image segmentation has received a lot of attention and

popularity in recent years to segment images as it overcomes

some of the inherent problems associated with very precise

unsupervised image segmentation. Earlier work in this area

are live-wire [2] and intelligent scissors [3] where users

provide some information about the location of the object

boundary that is then used to guide the image segmentation

task. Both live-wire [2] and intelligent scissors [3], being an

edge based methods are highly susceptible to noise and often

miss weak object boundaries. Active contour models such as

(a) 3 marked pixels (b) True (c) Proposed method

Figure 1. Image from Berkeley data set [4]. From left to right Seed
Points, Ground Truth, EBS (proposed method). The interactive
user input points sparsely sampling the foreground (green) and
background (red) are just single pixel but shown as thick dots for
ease of visibility. No pre-processing or post processing is performed
to generate the result.

[5] and [6] can be interactively initialized using a curve close

to the desired object boundary from which the curve evolves

under forces based on shape regularization and local edge

information [5] or region information [6]. One of the main

drawbacks of these methods is solutions are only locally

optimum hence the final results are greatly affected by the

initial input provided by the user. Graph based methods such

as [7], [8] and [9] frame the interactive segmentation task as

a graph cut problem, the goal here is to find a minimum cost

cut that best separates the foreground from the background.

Random walker [10] is another graph based algorithm that

uses a different approach where a random walker jumps from

one unlabeled pixel to another until it reaches a foreground

or a background pixel.
The input to interactive image segmentation methods are

primarily provided in two ways, scribble (brush strokes) or

by drawing a rectangular box around an object. Recently, in

[1] we have suggested sparse inputs in the form of points

for the task of interactive image segmentation. Only eight

to ten pixels are marked and the sparse input leads to a

very fast image segmentation process. In this work we use

the same frame work as suggested in [1] for the interactive

image segmentation task but use a different basis function

in the governing equation. The spline functions used are

Elastic Body Splines (EBS) which are analytic solutions of

the Navier equilibrium PDE that models the deformation

of an elastic body. EBS have been applied to the task of
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biomedical image registration [11] and in this work we

propose to use it for interactive image segmentation. In

section 2 we provide a brief description of the original

EBS based image registration problem. In section 3 we

adapt the EBS framework for interactive image segmentation

and include relevant mathematical details. In section 4 we

provide quantitative and qualitative results of the proposed

framework and finally in section 5 we provide a summary

of our work along with possible directions for future work.

II. ELASTIC BODY SPLINES

The Elastic Body Splines (EBS) belong to the class of

3D splines suggested by Davis in [11] and mainly used

for elastic registration of bio-medical images. Given the

displacement of landmark points in a source and a target

image a transformation is determined that maps the corre-

sponding landmarks in the source and the target image and

interpolates the displacement for all the remaining points

in the transformed image. The deformable displacement

transformation is modeled as

�d(�x) = A�x+�b+

N∑
i=0

G(�x− �pi)�ci (1)

where d(�x) is the displacement vector of the landmark

points. A, b and C are the coefficients for affine and non-

linear elastic terms. Here the first sum represents a non-linear

elastic transformation while the second expression represents

a linear affine transformation. EBS splines are an analytic

solution of the Navier equilibrium PDE.

μ∇2�u(�x) + (μ+ λ)∇[∇ · �u(�x)] = �f(�x) (2)

Here �u(�x) is the field at position �x, �f(�x) is the external

force vector, μ, λ are the Lame coefficients, ∇2, ∇ denote

the Laplacian and gradient respectively. Eq. (2) models

the deformation of a homogeneous isotropic elastic body

subjected to loads. The solution of (2) is obtained by

Galerkin vector method, that results in three coupled PDEs

for the displacement u(�x) which are then transformed into

three independent radially symmetric biharmonic PDEs. In

[11] the authors have suggested to use rational force of type

(3)
�f(�x) = �c/r(�x) (3)

where �c is a multiplicative constant vector. The elastic body

spline function for the force �f(�x) = �c/r(�x) is given as

G(�x) = βr(�x)I− �x�xT /r(�x) (4)

where β = 8(1−ν)−1, ν = λ/2(λ+μ) and I is the identity

matrix. PDE (2) is solved using the force function (3). We

refer to [13] and the references there-in for additional details

regarding EBS.

Gaussian elastic body splines (GEBS) belongs to class

of elastic splines suggested by Kohlrausch in [12] for bio-

medical image registration. The spline function for GEBS is

given as

G(�x) =

[(
(4(1− ν)− 1)

Erf(r̂)

r

−
√

2

π
σ
e−r̂2

r2
+ σ2Erf(r̂)

r3

)
I

+

(
Erf(r̂)

r3
+ 3

√
2

π
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e−r̂2
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− 3σ2Erf(r̂)
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)
�x�xT

]
.

(5)

were Erf(·) is the standard error function, r̂ = |�x|/√2σ, I
is the identity matrix, �x�xT is an outer product. The GEBS

function is derived by also solving PDE (2) but using a

Gaussian external force term as described in [12].

III. FRAMEWORK FOR INTERACTIVE IMAGE

SEGMENTATION

For an interactive image segmentation task we learn the

classification function �d(�x) of the following spline form,

�d(�x) = A�x+�b+

N∑
i=0

G(�x− �pi)�ci. (6)

such that

N∑
i=0

�ci = �0 ,

N∑
i=0

�cipij = �0 j = 1, . . . , 5 (7)

where �x is a feature vector, G is a spline matrix, �ci are the

spline coefficients, �pi are the labeled pixels and the matrix A
and �b are coefficients for the linear mapping. The constraints

in (7) ensure that the system of equations (6) has a unique

solution. In [1] we have used GEBS (8) as the spline function

for interactive image segmentation. In this paper we change

the basis function to the EBS form, so the classification

function is given as,

�d(�x) = A�x+�b+

N∑
i=0

GEBS(�x− �pi)�ci. (8)

where GEBS is given by (4).

For the task of interactive segmentation �d(�x) is learned

from the user supplied seed points such that �d(�x)) = +�1T

for the foreground pixels and �d(�x) = −�1T for the back-

ground pixels. Let �w be the vector of all the EBS coefficients

given as,

�w =
[
CF CB A �bT

]T
(9)

where CF and CB are the elastic coefficients corresponding

to the foreground and the background seed pixels.

CF =
[
�cT1 . . .�cTf

]
, CB =

[
�cT1 . . .�cTb

]
.

The EBS mapping determined by the weights �w that we are

solving for, is given by the relationship, Y = L�w, where Y
is the set of displacement vectors for the user defined seed
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points. When matrix L is singular or close to being singular,

computational techniques such as SVD can be used to obtain

the EBS coefficients. The EBS coefficients are estimated by

solving the matrix equation,

�w = L−1�Y (10)

where,

L =

[
K P
PT O

]
, K =

[
GFF GFB

GBF GBB

]
(11)

GFF (�r) =

⎡
⎢⎣
G11(�r11) . . . G1f (�r1f )

...
...

Gf1(�r11) . . . Gff (�rff )

⎤
⎥⎦ (12)

with �rij is the distance between feature vectors �pi and �pj
of the foreground seed points. Hence, GFF is the matrix of

EBS (4) functions defined only over the foreground pixels.

GFB , GBB and GBF are similarly defined,

P =

[
PF IF
PB IB

]
, (13)

where the identity matrices are given by,

IF =
[
I1 . . . If

]
, IB =

[
I1 . . . Ib

]
, (14)

and,

PF =

⎡
⎢⎣
x11I . . . x15I

...
...

xf1I . . . xf5I

⎤
⎥⎦ (15)

where xij is the jth feature for ith pixel. PB is similarly

defined. The vector �Y consists of �YF with values +1 for

the foreground seed points and �YB with values -1 for the

background seed points,

�Y =
[
�YF

�YB
�O
]T

(16)

where �O is a vector of zeros.

Once the classification function (8) is learned for classifica-

tion purposes we use zero (midpoint value between −1 and

+1) to threshold the vector �d(�x) and assign label �(�x) to a

pixel by taking consensus among vector elements of �d(�x),

�(�x) =

{
foreground, if majority �d(�x) elements ≥ 0

background, if majority �d(�x) elements < 0.
(17)

The classification functions for EBS and GEBS are shown

in Fig. 3. As we can see from plots both the classification

functions are symmetric in nature however the effect of seed

points in case of EBS is global in nature while for GEBS

the effect of seed point is more local in nature.

(a) EBS (b) EBS

(c) GEBS (d) GEBS

Figure 2. Classification functions for EBS with ν = 0.25 and GEBS with
ν = 0.25 and σ = 4.0.

No. Methods F-measure

1 EBS 0.8770±0.0993

2 GEBS 0.7370±0.2273

3 RW 0.6928±0.2403

4 GC 0.3869±0.3485

Table I
QUANTITATIVE EVALUATION : AVERAGE F-MEASURE ON 50 IMAGES

FROM GRAB-CUT DATA SET [8] USING AN AVERAGE OF 8.46 MARKED

PIXELS PER IMAGE.

IV. EXPERIMENTS

A. Quantitative Evaluation

We use images from the Grab-cut datasets [8] to pro-

vide the quantitative evaluation. Instead of using tri-maps

seed points are provided manually by the user and then

the segmentation is performed over entire image. In our

experiment, we mark ten or less pixels as the initial seed

points and compare the performances of EBS and GEBS

spline functions and two popular methods Random walk

(RW) [10] and Graph Cut (GC) [7] in our comparison. No

pre or post processing operations are performed on the input

image or the segmentation results obtained from different

methods.

EBS and GEBS functions have parameters μ and σ that

need to tuned for the task of interactive image segmentation.

The optimum value of parameters is determined empirically.

For experiments we set μ = .25 for spline EBS and μ = .25
and σ = 1.0 for spline EBS. As we can see from the

Table I, of the four methods evaluated EBS-based interactive

segmentation gives the most accurate results compared to

manual ground truth. GEBS has significantly lower perfor-

mance than the EBS which indicates the choice of force

function is critical in the PDE (2) as it determines the

behavior of the interpolating function (6). The performance

of graph cut is quite poor mainly because it fails to learn the

foreground-background color model accurately when only a

sparse set (8 to 10) of pixels are marked as seed points.
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(a) 0.9665� (b) 0.8025 (c) 0.9579 (d) 0.5050

(e) 0.9610 (f) 0.7515 (g) 0.9733 (h) 0.0038

(i) 0.9350 (j) 0.6448 (k) 0.4498 (l) 0.2044

(m) TRUE (n) EBS 0.9739 (o) GEBS 0.5514 (p) RW 0.9013 (q) GC 0.9202

Figure 3. Qualitative results using images from Grab-cut [8] and Berkeley
database [4]. From left to right input seeds, ground truth mask, EBS, GEBS
[1], Random walk [10], Graph-cut [7]. � F-scores for the segmentation
results. 9 pixels are marked as foreground and background. No pre-
processing or post processing is performed to generate results.

(a) Image from Grab-cut dataset (b) Image from Berkeley dataset

Figure 4. Timing analysis for EBS and GEBS using images from Grab-cut
and Berkeley datasets.

B. Timing Performance

We have also compared the speed of EBS and GEBS

splines with different number of marked seed points. As

shown in Fig. 4 the speed of EBS is 2.5 times faster that of

GEBS. GEBS makes use of the error function (8) which is a

computationally expensive operation and makes the GEBS

performance slower compared to EBS. The experiments

were performed on a Windows laptop with 2.4GHz CPU,

3GB RAM and MATLAB R2012a.

V. CONCLUSIONS

We have presented a novel adaptation of Elastic Body

Splines (EBS) for interactive image segmentation. It uses

the strength of elastic body splines to learn an interpolating

pixel classifier function using sparse inputs, flexibly seg-

menting complex image for the task of interactive image

segmentation. Quantitative and qualitative results suggest

that the performance of EBS is significantly better than

other methods like GEBS indicating that the choice of basis

function is critical in the interpolation based interactive

image segmentation framework. Experimental results also

show that the EBS outperforms other widely used methods

like random walk and graph cut.
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