#176: CNN - Based Image Analysis for Malaria Diagnosis

Z. Liang, S. Jaeger, G. Thoma, J. Huang, P. Guo, A. Powell, K. Silamut, I. Ersoy, M. Poostchi, K. Palaniappan, and R. J. Maude

Proc. IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2016

deep learning, malaira, cells, classification, biomedical

PlainText, Bibtex, Google Scholar


Malaria is a major global health threat. The standard way of diagnosing malaria is by visually examining blood smears for parasite - infected red blood cells under the microscope by qualified technician s. This method is inefficient and the diagnosis depends on the experience and the knowledge of the person doing the examination. Automatic image recognition technologies based on machine learning have been applied to malaria blood smears for diagnosis befo re. However, the practical performance has not been sufficient so far. This study proposes a new and robust machine learning model based on a convolutional neural network (CNN) to automatically classify single cells in thin blood smears on standard microsc ope slides as either infected or uninfected. In a ten - fold cross - validation based on 27,578 single cell images, the average accuracy of our new 16 - layer CNN model is 97.37%. A transfer learning model only achieves 91.99% on the same images. The CNN model shows superiority over the transfer learning model in all performance indicators such as sensitivity (96.99% vs 89.00%), specificity (97.75% vs 94.98%), precision (97.73% vs 95.12%), F1 score (97.36% vs 90.24%), and Matthews correlation coefficient (94.75% vs 85.25%).