#189: Parallax tolerant aerial image georegistration and efficient camera pose refinement - Without piecewise homographies


We describe a fast and efficient camera pose refinement and Structure from Motion (SfM) method for sequential aerial imagery with applications to georegistration and 3-D reconstruction. Inputs to the system are 2-D images combined with initial noisy camera metadata measurements, available from onboard sensors (e.g., camera, global positioning system, and inertial measurement unit). Georegistration is required to stabilize the ground-plane motion to separate camera-induced motion from object motion to support vehicle tracking in aerial imagery. In the proposed approach, we recover accurate camera pose and (sparse) 3-D structure using bundle adjustment for sequential imagery (BA4S) and then stabilize the video from the moving platform by analytically solving for the image-plane-to-ground-plane homography transformation. Using this approach, we avoid relying upon image-to-image registration, which requires estimating feature correspondences (i.e., matching) followed by warping between images (in a 2-D space) that is an error prone process for complex scenes with parallax, appearance, and illumination changes. Both our SfM (BA4S) and our analytical ground-plane georegistration method avoid the use of iterative consensus combinatorial methods like RANdom SAmple Consensus which is a core part of many published approaches. BA4S is very efficient for long sequential imagery and is more than 130 times faster than VisualSfM, 35 times faster than MavMap, and about 274 times faster than Pix4D. Various experimental results demonstrate the efficiency and robustness of the proposed pipeline for the refinement of camera parameters in sequential aerial imagery and georegistration.