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ABSTRACT

Automated curvilinear image segmentation is a crucial step
to characterize and quantify the morphology of blood vessels
across scale. We propose a dual pipeline RF OFB+U-NET
that fuses U-Net deep learning features with a low level im-
age feature filter bank using the random forests classifier for
vessel segmentation. We modify the U-Net CNN architecture
to provide a foreground vessel regression likelihood map that
is used to segment both arteriole and venule blood vessels in
mice dura mater tissues. The hybrid approach combining both
hand-crafted and learned features was tested on 60 epifluores-
cence microscopy images and improved the segmentation of
thin vessel structures by nearly 5% using the Dice similarity
coefficient compared to U-Net.

Index Terms— Semantic vessel segmentation, deep
learning, histogram equalization, random forests, U-Net.

1. INTRODUCTION

Automatic segmentation and quantification of blood vessels
is important to characterize changes in flow dynamics dur-
ing vascular network remodeling [1]. Veins are very much
understudied with respect to arteries, mainly due to the diffi-
culty of collecting data and imagery, despite the fact that they
play a crucial role in maintaining tissue perfusion and home-
ostasis [2, 3]. This paper focuses on segmenting both arte-
rioles and venules making an important contribution to the
field. Such patient specific approaches can improve the diag-
nosis and treatment of chronic conditions such as glaucoma,
hypertension, diabetes or estrogen deprivation. Changing re-
sponse state of the vasculature to different physiological con-
ditions can be extracted from biomedical imagery for quanti-
tative research. Many automated analysis methods have been
proposed to segment blood vessels especially retinal vessels
in brightfield fundoscopy images [4] and larger arteries and
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Fig. 1. Our proposed RF OFB+U-NET dual pipeline. The
grayed area is the main inference path composed of optimized
filter bank (convolutional features) and U-Net regression like-
lihood map (sample result shown at bottom).
veins in angiograms [5]. However, there has not been as much
study of image analysis methods for segmenting the smallest
vessels known as capillaries or microvasculature often imaged
using fluorescence microscopy. Further, the majority of exist-
ing methods for segmenting vessel structures use hand-crafted
image features [6, 7, 8, 9]. More recently deep learning based
methods are being applied to biomedical imagery for accurate
image segmentation of vessels [10, 11, 12, 13, 14, 15, 16]. We
present a new methodology that combines the strength of both
hand-crafted features and learned features to produce a ro-
bust state-of-the-art vessel segmentation algorithm, as shown
in Figure 1 for the feature fusion pipeline. In our previous
work we focused on segmenting only the arteriole part of the
vasculature for a small set of epiflourescent imagery [14, 9];
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Fig. 2. Visualization of applying contrast-limited adaptive
histogram equalization: (a) Original image, (b) CLAHE en-
hanced, (c) Histogram of (a), and (d) Histogram of (b).

arterioles transport oxygenated blood. We extended our pre-
vious work on segmenting arterioles which have more dis-
tinct boundaries to also segment venule segments with diffuse
boundaries [9] by adapting the widely used U-Net deep con-
volutional neural network architecture [17] to work with epi-
fluorescence blood vessel images. In this paper, we study the
automatic segmentation of both arteriole and venule anatom-
ical structures and use a larger dura mater dataset with 60
images. The proposed approach in this paper extends our
previous approach using random forests and filter bank fea-
tures combined with a U-Net based likelihood score map for
the foreground vessel structure. The U-Net feature map pro-
vides an additional feature input to the random forest learn-
ing algorithm to support more precise and robust pixel wise
segmentation of the complete microvasculature in extremely
challenging dura mater epifluorescence microscopy images.

2. OUR PROPOSED DUAL PIPELINE
ARCHITECTURE RF OFB+U-NET

The proposed dual CNN model provides a new deep learning
architecture to exploit the strengths of learned feature extrac-
tion uding convolutional neural networks with hand-crafted
features based on computer vision and image processing ex-
pert knowledge. Hand-crafted features show the benefit of
improved performance with lower computational cost, less
training data, applicability across domains without retraining
and optimization for realtime systems [18]. Our proposed
dual CNN pipeline shown in Figure 1 fuses vessel specific
features using an engineered optimized filter bank with the
foreground likelihood map from the modified U-Net CNN ar-
chitecture. This aggregation along with a random forests (RF)
classifier produces robust pixel-wise segmentation on chal-
lenging microscopy images of dura mater capillaries.

2.1. Pre-processing using contrast-limited adaptive his-
togram equalization (CLAHE)

The green channel pixel grayscale intensity values were en-
hanced before including them as a feature in the RF or as input
to the U-Net deep learning network. Intensity is an important
feature to characterize venule regions. Since venule structures
are more diffuse with less distinctive boundaries compared

Table 1. Description and dimensionality of our optimized
filter bank (OFB) for random forest (RF) classifier.

Feature Dim.
tanh of Frobenius norm over 5 scales 5
using Gaussian filters for five scales σ = {1, 2, 3, 4, 5} with filtering window size of [-3σ, 3σ]
Z-score sigmoid max Frobenius norm over 5 scales 1
Intensity of green channel 1
Maximum response of oriented 2nd derivatives over 3 scales & 3 orientation maps 6
using oriented second derivative filters of Leung-Malik (LM) [20] with σ = 3 ∗ {

√
2, 2, 2

√
2}

Maximum response over eight scales of LoG filter & sigma map 2
using LoG filters of LM [20] with σ = {

√
2, 2, 2

√
2, 4} and 3σ

Curvature using oriented first and second derivatives of LM filters [20] with scale equal to σ = 6 1
Orthogonal pairs first derivative using three counterpart angles 1
with scale equal to σ = 6, max-pooling is used then to obtain the response over all angles
Multiscale Line Detector [7] 1
Dim. of all features together 18

to the arteriole regions, most derivative-based approaches fail
to accurately segment venules. Our epifluorescence images
are characterized by excessive stain in the background, along
with non-homogeneous staining within the lumen for which
histogram equalization and other stretching methods result in
amplification of noise artifacts in the relatively homogeneous
regions. Histogram-based enhancement using CLAHE was
used to increase image contrast without increasing noise ar-
tifacts [19]. The CLAHE tile size was set to 25 × 25 pix-
els and 0.02 for the clip limit. Figure 2 shows the result
of CLAHE-based histogram stretching to increase dynamic
range and bring out faint vessel structures that would other-
wise be missed during segmentation and reduce the likelihood
of false negatives.

2.2. Vessel segmentation using random forests classifier
with optimized filter bank (RF OFB)

We use a random forests bagging classifier to predict the class
label of each pixel as vessel or non-vessel. Bagging means
bootstrap aggregation in which an ensemble of trees is grown
for either regression or classification. Bagging is designed
to decrease variance and avoid over-fitting since each tree is
constructed using a different set of samples and variables. Av-
eraging is used in the case of regression trees and voting in the
case of classification to make function learning more accurate
and with less over-fitting. We have improved our work in [9]
to also segment the venule capillaries, which is more chal-
lenging compared to arteriole segmentation. Table 1 summa-
rizes the hand-crafted features used and §3.2 has more de-
tails. Additional epifluorescence microscopy images, more
features, more trees, improved pre- and post-processing are
incorporated to obtain improved micro-vessel segmentations
using the RF OFB classifier.

2.3. U-Net deep learning CNN architecture adapted for
blood vessel segmentation (U-Net)

Semantic segmentation has been widely adopted for biomed-
ical segmentation after Long et al. [21] described an end-to-
end fully CNN-based segmentation approach for natural im-
ages in the Pascal VOC 2012 dataset. Semantic segmentation
performs pixel-wise grouping and labeling so that each pixel
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Fig. 3. Adapted U-Net architecture for capillary vessel seg-
mentation in microscopy images of brain dura mater.
in the image has a unique class label or category that is typi-
cally used to classify objects such as people, vehicles, objects,
animals, etc. Several deep architectures have been proposed
for semantic segmentation [22]. U-Net[17] was designed for
biomedical image segmentation and has become very pop-
ular after winning two challenges at ISBI 2015 (Grand Chal-
lenge and Cell Tracking Challenge). U-Net’s name is inspired
from its architecture layout which consists of a contraction
path followed by an expansion path, each composed of sev-
eral blocks; blocks maybe convolution or transpose convolu-
tion, ReLU and pooling. U-Net preserves spatial information
even through max-pooling layers along the contraction path
by concatenating intermediate layers with their correspond-
ing feature maps along the opposite expansion path (see Fig.
3). As a result, larger structural context is captured along the
contraction (feature) path without loss of spatial semantic de-
tails along the expansion (pixel labeling) path.

Figure 3 shows the modified U-Net architecture deep net-
work that uses input image patches or tiles of size 256× 256
pixels with filter sizes, padding, and strides shown. Tiles are
used for training to decrease the number of layer (convolu-
tion) parameters needed and increase the training speed. Our
architecture consists of four stages along both contraction and
expansion paths; each block has 2 convolutions, 2 ReLU’s
and one max pooling, and transpose convolution (upsampling
and interpolation) replaces max pooling along the expansion
path. After each transpose convolution feature maps are con-
catenated from the encoder side to have higher resolution for
pixel labeling. We incorporated two dropout layers, with a
probability of 0.5, to reduce over-fitting.

3. EXPERIMENTAL RESULTS

3.1. Dataset and setup

The experiments were performed using high resolution epiflu-
orescence microscopy images of mice dura mater for under-
standing changes to the vasculature network remodeling mor-
phology under estrogen deprivation versus a control. A set of
40 epifluorescence ovary intact (OV), also referred to as intact

female, images consisting of 20 ER-β wild-type (WT), and
20 ER-β knock-out (KO) intact mice were used. The treated
post-ovariectomy (OVX) class includes a set of 20 epifluores-
cence images consisting of 10 WT and another 10 KO. These
60 images are selected and marked carefully by three experi-
enced physiologists, using interactive methods [23], to obtain
segmentations of the arterioles and venules. We use a Hessian
feature-based multi-focus fusion algorithm [24] to obtain a
set of higher quality all-focus epifluorescence images and our
proposed framework was applied on these fused images1

3.2. Implementation details and comparison

In our experiments, we used four fold cross-validation using
40 OV/IF images from WT and KO intact mice. OVX images
were set aside just for testing as they have different statisti-
cal characteristics that may adversely effect the classifier. In
each experiment, we utilized 30 images for training and the
remaining 10 for testing in addition to the 20 OVX images.
The overall performance is estimated by averaging the cross-
validation results. Table 2 compares the average performance
of 5 evaluation metrics using the set of 60 images.

Evaluating our dual RF OFB+U-Net deep architecture
followed these three steps: i) Training the U-Net architecture
to provide an informative likelihood feature map to be used
with other hand-crafted features, ii) Training the random for-
est bagging classifier combining the 18 filter bank features
described in Table 1, with the U-Net likelihood map to form
a 19-D feature vector, and, iii) Using the resulting trained
model for inference to assess delineation of blood vessel net-
works in the dura mater epifluorescence microscopy images.

U-Net was trained using non-overlapping tiles. Our im-
ages are 1036 × 1360, with images padded to 1280 × 1536
and cropped into non-overlapping tiles of size 256× 256 pix-
els. This data augmentation produced 30 tiles from each indi-
vidual image to construct training samples equal to 900 tiles
in each fold. However, this resulted in poor segmentation re-
sults, due to insufficient training sample size; as seen in Ta-
ble 2 Row 4 (U-Net), a sensitivity of 78.35% indicates vessel
segments have missed detections. In the second experiment,
we used additional data augmentation to increase the training
sample size by randomly cropping 50 tiles from each image,
and each tile is augmented 8 times by adding random rota-
tions, reflections, and scaling. As a result, our new training
set consists of 12,000 samples (30×50×8) for each fold. Our
optimized U-Net has a notable improvement in performance,
Row 5 in Table 2, with a Dice value of 86.88%, almost 4%
higher than the first experiment with 83.03%.

The random forest was trained using the same cross vali-
dation approach as for U-Net. The likelihood map is obtained
using the trained model of U-Net for each individual image,
simultaneously, feature maps described in Table 1 are gener-

1Each of the 60 epifluorescence fused images used consist of a variable
number of single-focus images at the same tissue location.
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Table 2. Experimental results for six approaches to extract both arteriole and venule blood vessel segments in our challenging
dura mater epifluorescence microscopy blood vessel images. We show the overall average sensitivity, precision, specificity,
accuracy, and Dice coefficient for 60 images with Bold highlighting the best performance.

# Machine Learning Approaches Sensitivity Precision Specificity Accuracy Dice
1 RF + no preprocessing 86.61± 7.95 87.44± 5.45 99.16± 0.39 98.21± 0.93 86.68± 4.41

2 RF + preprocessing all features 89.03± 7.1 84.05± 8.09 98.89± 0.53 98.07± 0.89 85.93± 3.85

3 RF + preprocessing intensity only 87.66± 7.3 87.62± 5.3 99.15± 0.41 98.27± 0.93 87.35± 4.02
4 U-Net 78.35± 8.7 89.54± 7.7 99.37± 0.4 97.89± 1.1 83.03± 5.4
5 U-Net optimized 89.22± 6.2 85.81± 9.6 98.98± 0.76 98.24± 0.86 86.88± 4.9
6 Proposed method RF OFB+U-NET 89.68± 6.1 86.96± 6 99.08± 0.53 98.37± 0.83 88.00± 3.6

ated to produce feature vectors for 42,268,800 pixel observa-
tions; with most of those observations for background pixels.
For a more balanced sampling of the classes, we randomly
removed background observation samples till the class distri-
butions had almost an equal number of foreground and back-
ground pixels. The new 19-D feature vectors had 22,787,086
observations with their corresponding labels. After heuristic
analysis we chose 70 trees to train the RF and 15 epochs to
train U-Net with stochastic gradient descent and momentum
optimization. The results in all experiments have been post-
processed using morphological operations.

The first three rows of Table 2 shows the performance of
hand-crafted features with RF classifier. It is interesting to
note that Dice decreased by about 1% when the raw image
was pre-processed before feature maps were generated (Row
1 vs 2). This decrease is likely due to increased noise (false
positive pixels) in the segmentation. Applying pre-processing
to the intensity feature only, produces the best Dice results
among all segmentations using hand-crafted features. Rows
4 and 5 in Table 2 show U-Net experiments, and the last row
shows our pipeline results. The overall average performance
of our pipeline outperforms the stand-alone approaches in
terms of Dice, accuracy and sensitivity. The combination of
a set of strong hand-crafted features with a U-Net likelihood
map adds more robustness and confidence for the random
forests pixel-wise segmentation outputs as shown in Figure 4.

4. CONCLUSIONS

The proposed RF OFB+U-Net deep learning architecture
for automatic blood vessel segmentation combines an op-
timized convolution feature filter bank with U-Net learned
vessel regression feature map using a random forest semantic
segmentation classifier. Selective image enhancement using
CLAHE has a positive impact on performance. The proposed
hybrid approach outperforms either individual hand-crafted
or deep learning U-Net feature groups for vessel segmenta-
tion in terms of accuracy (98.4%) and Dice coefficient (88%).

5. ACKNOWLEDGMENTS
This work was partially supported by awards from U.S
National Institute of Health NINDS R01 NS110915, R01
DK095501 (VHH), NSF CNS-1429294 and DMS-1853222/

ERbWT4-OVX 92.32 63.58 92.46

ERbWT11-OVX 93.45 78.51 95.75

ERbWT9-OV 93.99 95.46 96.35

ERbKO3-OV 89.20 90.15 91.06

ERbKO3-OVX 82.33 85.93 87.32

(a) Raw Image (b) Ground Truth (c) RF_OFB (d) U-Net (e) RF_OFB+U-Net

ERbKO4-OV 91.45 91.91 92.49

Fig. 4. Comparison of proposed pipeline for vessel segmentation
using Dice values. (a) Input epifluorescence microscopy image, (b)
Ground truth segmentation, (c) RF OFB related to row 3 in Table 2,
(d) U-Net for row 5 in Table 2, and (e) Our pipeline RF OFB+U-Net.
In the ground truth, orange segments correspond to the arteriole part,
and, purple segments represent venules. In the automatic segmenta-
tion results, white regions represent correctly segmented pixels, and
pixels colored red are missing (false negative) and blue are extra
regions (false positive) compared to GT. The RF OFB+U-Net (Col
(e)) is better than either single approach method.

1853303. Animals were graciously provided by Dennis
Lubahn. YMK was partially supported by an HCED Gov-
ernment of Iraq doctoral scholarship. The content does not
necessarily represent the official views of NIH or NSF.

6. REFERENCES

[1] G. Guidoboni, A. Harris, and R. Sacco, Mathematical
Modeling of Ocular Fluid Dynamics: From Theory to

1448



Clinical Applications, Springer-Birkhauser, 2019.

[2] G. Guidoboni et al., “Intraocular pressure, blood pres-
sure, and retinal blood flow autoregulation: A mathe-
matical model to clarify their relationship and clinical
relevance,” Investigative Ophthalmology & Visual Sci-
ence, vol. 55, no. 7, pp. 4105–4118, 2014.

[3] M. Glucksberg and R. Dunn, “Direct measurement of
retinal microvascular pressures in the live, anesthetized
cat,” Microvascular Research, vol. 45, no. 2, pp. 158–
165, 1993.

[4] M. Fraz et al., “Blood vessel segmentation methodolo-
gies in retinal images – A survey,” Computer Methods
and Programs in Biomedicine, vol. 108, no. 1, pp. 407–
433, 2012.

[5] R. M. Tayebi et al., “Coronary artery segmentation in
angiograms with pattern recognition techniques – A sur-
vey,” in Int. Conf. Advanced Computer Science Appli-
cations and Technologies, 2013, pp. 321–326.

[6] A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A.
Viergever, “Multiscale vessel enhancement filtering,”
Int. Conf. Medical Image Computing and Computer As-
sisted Intervention (MICCAI), pp. 130–137, 1998.

[7] U. T. V. Nguyen, A. Bhuiyan, L. A. F. Park, and K. Ra-
mamohanarao, “An effective retinal blood vessel seg-
mentation method using multi-scale line detection,” Pat-
tern Recognition, vol. 46, no. 3, pp. 703–715, 2013.

[8] D. Marı́n, A. Aquino, M.E. Gegúndez-Arias, and J.M.
Bravo, “A new supervised method for blood vessel seg-
mentation in retinal images by using gray-level and mo-
ment invariants-based features,” IEEE Transactions on
Medical Imaging, vol. 30, no. 1, pp. 146, 2011.

[9] Y. M. Kassim, V. B. S. Prasath, R. Pelapur, O. Glinskii,
R. J. Maude, V. Glinsky, V. Huxley, and K. Palaniappan,
“Random forests for dura mater microvasculature seg-
mentation using epifluorescence images,” in IEEE Engi-
neering in Medicine and Biology Society Conf. (EMBC),
2016, pp. 2901–2904.

[10] P. Teikari, M. Santos, C. Poon, and K. Hynynen,
“Deep learning convolutional networks for multipho-
ton microscopy vasculature segmentation,” arXiv:
1606.02382, 2016.

[11] H. Fu et al., “DeepVessel: Retinal vessel segmenta-
tion via deep learning and conditional random field,” in
Int. Conf. on Medical Image Computing and Computer-
Assisted Intervention (MICCAI), 2016, pp. 132–139.

[12] Q. Li et al., “A cross-modality learning approach for
vessel segmentation in retinal images,” Transactions on
Medical Imaging, vol. 35, no. 1, pp. 109–118, 2016.

[13] T. J. Jebaseeli, C. A. Durai, and J. D. Peter, “Segmen-
tation of retinal blood vessels from ophthalmologic dia-
betic retinopathy images,” Computers & Electrical En-
gineering, vol. 73, pp. 245–258, 2019.

[14] Y. M. Kassim, V B. S. Prasath, O Glinskii, V Glinsky,
V Huxley, and K. Palaniappan, “Microvasculature seg-
mentation of arterioles using deep CNN,” in IEEE Int.
Conf. on Image Processing, 2017, pp. 580–584.

[15] Y. M. Kassim and K. Palaniappan, “Extracting retinal
vascular networks using deep learning architecture,” in
IEEE International Conference on Bioinformatics and
Biomedicine (BIBM), 2017, pp. 1170–1174.

[16] Y. M. Kassim, R. J. Maude, and K. Palaniappan, “Sen-
sitivity of cross-trained deep CNNs for retinal vessel ex-
traction,” in IEEE Engineering in Medicine and Biology
Society Conf. (EMBC), 2018, pp. 2736–2739.

[17] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convo-
lutional networks for biomedical image segmentation,”
in Int. Conf. Medical Image Computing and Computer-
Assisted Intervention (MICCAI), 2015, pp. 234–241.

[18] J. L. Schönberger, H. Hardmeier, T. Sattler, and
M. Pollefeys, “Comparative evaluation of hand-crafted
and learned local features,” in IEEE Conf. Computer
Vision and Pattern Recognition, 2017, pp. 6959–6968.

[19] S. M. Pizer et al., “Adaptive histogram equalization and
its variations,” Computer Vision, Graphics, and Image
Processing, vol. 39, no. 3, pp. 355–368, 1987.

[20] T. Leung and J. Malik., “Representing and recog-
nizing the visual appearance of materials using three-
dimensional textons,” International Journal of Com-
puter Vision, vol. 43, no. 1, pp. 29–44, 2001.

[21] J. Long, E. Shelhamer, and T. Darrell, “Fully convo-
lutional networks for semantic segmentation,” in IEEE
Conference on Computer Vision and Pattern Recogni-
tion, 2015, pp. 3431–3440.

[22] A. Garcia-Garcia et al., “A review on deep learn-
ing techniques applied to semantic segmentation,”
arXiv:1704.06857, 2017.

[23] S. Meena, V. B. S. Prasath, Y. M. Kassim, R. J. Maude,
O. Glinskii, V. Glinsky, V. Huxley, and K. Palaniappan,
“Multiquadric spline-based interactive segmentation of
vascular networks,” in IEEE Eng. in Medicine and Biol-
ogy Society Conf. (EMBC), 2016, pp. 5913–5916.

[24] R. Pelapur, V. B. S. Prasath, F. Bunyak, O. Glinskii,
V. Glinsky, V. Huxley, and K. Palaniappan, “Multi-focus
image fusion on epifluorescence microscopy for robust
vascular segmentation,” in IEEE Eng. in Medicine and
Biology Society Conf., 2014, pp. 4735–4738.

1449


