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ABSTRACT
Muscle satellite cells, also known as myogenic precursor
cells, are the dedicated stem cells responsible for postnatal
skeletal muscle growth, repair, and hypertrophy. Biological
studies aimed at describing satellite cell activity on their host
myofiber using timelapse light microscopy enable qualita-
tive study, but high-throughput automatic tracking of satellite
cells translocating on myofibers is very difficult due to their
complex motion across the three-dimensional surface of my-
ofibers and the lack of discriminating cell features. Other
complicating factors include inhomogeneous illumination,
fixed focal plane, low contrast, and stage motion. We pro-
pose a semi-automated approach for satellite cell tracking on
myofibers consisting of registration with illumination cor-
rection, background subtraction and particle filtering. Initial
experimental results show the effectiveness of the approach.

Index Terms— Satellite Cell Tracking, Particle Filters,
Registration, Background Modeling

1. INTRODUCTION

Growth or repair of muscle involving the generation of new
muscle cells requires the activity of a resident stem cell pop-
ulation, termed satellite cells [1]. Satellite cells are activated
by extracellular cues associated with myofiber damage. Once
activated, satellite cells escape out of their sublaminal niche in
the membrane of the myofiber, then re-enter the cell cycle to
proliferate and supply a population of committed myoblasts
taking the role of muscle stem cells [2, 3]. Understanding the
genetic, cellular, extracellular and biomechanical factors in-
volved in satellite cell activation and motility is facilitated us-
ing quantitative image analysis [4]. Such studies offer the po-
tential to improve our understanding of the processes involved
in normal muscle repair, muscle aging, myopathic conditions,
muscular dystrophy diseases, stem-cell based therapies and
the special anticancer properties of skeletal muscle cells.

There are several challenges in the automated tracking of
muscle satellite cells including complex crawling motion on
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Fig. 1. Muscle satellite cell moving on myofiber surface: (a) out of
focal plane and occluded by the myofiber, (b) within focal plane.

the surface of the myofiber, out of focal plane cell movement,
frame to frame jitter, inhomogeneous illumination and poor
contrast. Fig. 1 shows myofibers with motile satellite cells
in and out of the focal plane. A variety of detection-based
tracking algorithms have been developed recently for the pur-
pose of cell tracking. Ray et al. [5] explored a sequential
Bayesian framework for automatic cell tracking. The main
aim of [5] is to establish cell correspondences rather than han-
dling of complex cell motion. Li et al. [6] proposed a fast ac-
tive contour based 2D stem cell tracking in phase-contrast mi-
croscopy video. Nath et al. [7] describe a fast four-color level
set based multicell tracking method. For cell tracking using
graph matching, see the work of Mosig et al. [8], Chowdhury
et al. [9]. Bunyak et al. [10] developed long-term multiple
hypothesis tracking for monolayer tissues with dense nuclei.

To the best of our knowledge, no computer-aided meth-
ods are available to track muscle satellite cells on 3D my-
ofibers. We propose a three-step semi-automated solution
for the above tracking problem consisting of registration with
illumination correction, background subtraction and particle
filtering. In a supervisory mode, the proposed tracking algo-
rithms are manually restarted when there is significant change
that will likely result in errors due to: i) change of direction of
a cell by more than 90◦ compared to the previous frame, or ii)
movement of a cell out of the focal plane and occlusion by the
myofiber as it crawls along the opposing surface (see Fig. 1).
In the experiments the number of restarts is fixed beforehand
for each cell in order to compare performance across meth-
ods. Our contribution from the perspective of image analysis
lies in proposing a composite solution to a complex tracking
problem. From the biomedical viewpoint, our work addresses



the important problem of muscle stem cell tracking which has
potential for high-throughput screening studies related to cell
signalling, cell activation factors and muscle atrophy.

2. VIDEO PROCESSING METHODS
Our solution consists of the following three steps: a) correlation-
based registration with illumination correction to stabilize the
video and reduce motion artifacts arising from illumination
changes; b) background modelling and subtraction to obtain
an accurate foreground motion image; and c) particle filter-
based tracking to estimate the position of the cells in different
frames. No appearance model for the satellite cells has been
explicitly used in the present work.

2.1. Registration with Illumination Correction

In this step, we take appropriate measures for handling un-
steady imaging and illumination variation. Multiple fields of
view per experiment were acquired by programming the mi-
croscope stage to move to specific X/Y/Z coordinates within
a plate in a repetitive ten minute cycle; myofibers were im-
aged from the bottom. The repositioning accuracy, variation
in collagen media stiffness, and subtle deformable motion of
the myofiber from inertia as the stage moves, together con-
tribute to image jitter or background (myofiber) motion. In
order to remove background motion all the frames in a se-
quence are registered with the first frame.

However, prior to jitter compensation we first perform il-
lumination correction based on estimating the baseline frame
intensity level. Illumination changes between two frames can
also result in intensity pattern differences unrelated to cell
motion [11]. Let the first frame of a sequence be I1, the kth

frame be Ik, and the size of each frame be m × n. Then the
difference image Dk associated with frame k is given by:

Dk(i, j) = Ik(i, j)− I1(i, j), ∀(i, j), i ∈ [1,m], j ∈ [1, n]
(1)

To correct the illumination variation, we obtain the minimum
of Dk(i, j), denoted by Dmin

k and subtract it from Ik. Dmin
k

ensures minimum disturbance of the floating image Ik(i, j).
We call this the illumination corrected image Lk,

Lk(i, j) = Ik(i, j)−min
∀i,j
{Dk(i, j)} (2)

Frame to frame jitter compensation uses a simple camera
translational motion model. In order to register Lk with re-
spect to I1, we shift Lk by r rows, r ∈ [−R,+R], R is the
range of row shifts and c columns, c ∈ [−C,+C], C is the
range of column shifts to obtain a row-column shifted image
Sr,c. We now employ normalized 2D cross-correlation, a sta-
tistically robust measure of similarity, to register Sr,c with I1,
The normalized 2D cross-correlation, denoted by NC1,(r,c),
is given by [12]:

NC1,(r,c) =

∑
i

∑
j

(
I1(i, j)− Ī1

)(
Sr,c(i, j)− S̄r,c

)√∑
i

∑
j

(
I1(i, j)− Ī1

)2√∑
i

∑
j

(
Sr,c(i, j)− S̄r,c

)2
(3)

In Eq. 3, Ī1is the mean of I1 and S̄k is the mean of Sk. The
value of r and c for which NC1,(r,c) is a maximum (r∗, c∗)
provides an estimate of row and column shift required for reg-
istration. The registered image Rk is obtained by shifting Lk

by r∗ rows and c∗ columns. This simple method is effective to
register and stabilize the sequence for background modeling.

2.2. Background Modeling and Removal

A local spatially and temporally varying median filter is used
to model the background for a video frame [13]. We use a
temporal window of w frames to compute the median. For
the kth frame of the sequence, we take the registered frames
from [k − (w − 1)/2, k + (w − 1)/2]. Now, we compute
the pixel-wise median Bk(i, j) of these w registered frames
to obtain the background frame Bk,

Bk(i, j) = median
p∈[(k−w−1

2 ),(k+w−1
2 )]
{Rp(i, j)} (4)

As the cells move, this running median produces an adaptive
background model for the registered frameRp. We obtain the
foreground image Fk by subtracting Bk pixel-wise from Rk:

Fk(i, j) = Rk(i, j)−Bk(i, j) (5)

Illumination correction and registration steps improve the
quality of Fk. In the ideal case Fk contains only cell detec-
tions without the (myofiber) background, which can be used
for particle filter based tracking.

2.3. Particle Filter-based Tracking

The motion of the cells being nonlinear, particle filter [14,
15, 16] is a justified choice to predict the position of the cells
in a frame given the previous measurements. It is important
to note that for the same dynamical system, the particle filter
yields better accuracy compared to the extended Kalman filter
when applied using a large number (∼10,000) of particles.
The particle filter model equations are:

st = fs(st−1, ut), zt = fz(st, vt) (6)

Here, st is the state vector at time instant t, fs is the state
transition function, ut is the process noise with known dis-
tribution zt is the measurements at time instant t, fz is the
measurement function and vt is the measurement noise with
known distribution. Eq. 6 shows both the state equation and
the measurement equation [17]. We use the 2D coordinate of
the cell centroid as the state vector using the ground truth for
the first frame as the initial measurement. Now, if the posi-
tion of the cell centroid is known at the (k − 1)th frame, the
particle filter provides a prediction for the centroid in the kth

frame using Eq. 6. We also need to use the measurement in
frame k to guide the particle filter. Let the predicted position
of the cell centroid in the kth frame be (xk, yk). We consider
a region on the order of the cell size centered at this location
in image Fk. Since Fk contains primarily foreground objects



(cells), we use entropy based thresholding in this region to
produce cell detections. After thresholding, connected com-
ponent labeling followed by size filtering is used to extract the
largest connected component. The centroid of this component
(xmk, ymk) is taken as the measurement (zk) at frame k and
is used to predict the position of the cell in frame (k + 1).

3. EXPERIMENTAL RESULTS

Satellite cells are activated 24 hours prior to imaging through
the process of producing myofiber explants by dissecting
muscle from the hind limbs of female mice and culturing 3 to
5 myofibers per well containing collagen and growth serum
[4]. There were about 65 experiments (on 48-well plates)
with 20 to 30 fields imaged at 10× with a sampling interval
of 10 minutes over 24 hours to yield a set of 122 movies (145
frames each) for 250 control cells that satisfied the viability
and visibility criteria. We applied the proposed technique
to five satellite cell sequences (556 frames and 6 cells) with
associated ground truth provided by a biologist expert. Each
frame is 16-bit gray scale of spatial size 1344 × 1024 pixels
and resolution of 0.6143 µm per pixel.

Since no benchmark exists for this particular problem,
we evaluate the successive improvements in tracking result-
ing from each additional step compared to manual tracking.
Using only the particle filter (PF), the measurement is ob-
tained directly from Ik, as discussed in Section 2.3. The sec-
ond method RPF applies illumination correction and registra-
tion followed by PF-based tracking. The third method RBPF
applies all three steps including background removal. Using
domain knowledge, we set R=C=20 pixels. For computing
the background, we experimentally chose a window size of
w=11. The process noise ut and measurement noise vt are
normally distributed. Since each satellite cell shows different
dynamic behavior, the parameters of the state transition func-
tion fs and measurement function fz are adapted for each cell
and chosen experimentally. We have employed 10,000 parti-
cles to estimate the position of the centroid in each frame. A
large number of particles were required for high accuracy.

Performance advantage of RBPF is measured using track-
ing (distance) error, and recall (with restarts). The distance
error, Ekqm, in frame k for cell object q and method m =
{PF,RPF,RBPF} is given by:

E2
kqm = (xkq,GT − xkqm)2 + (ykq,GT − ykqm)2 (7)

where,(xkq,GT, ykq,GT) is the ground truth for cell q in frame
k and (xkqm, ykqm) is the estimated cell position for cell q in
frame k obtained by method m. The average distance track-
ing error for a particular sequence is given by the mean and
standard deviation, µE ± σE , of Ekqm for all cells across all
frames (excluding occluded or large motion frames). Since
the proposed method is semi-automated, we also report the
total number of restarts (for all cells) and percent recall per-
formance over all cells in each sequence.

Table 1. Tracking performance of PF, RPF and RBPF methods for
five sequences showing number of ground truth frames (GF), number
of cells tracked in that sequence (C), number of prespecified restarts
(R), recall accuracy in percent with restarts, average distance error.

S GF C R Recall (%) µE ± σE of Ekqm (µm)

PF RPF RBPF PF RPF RBPF

1 181 2 8 38 53 85 38.6±22.9 16.7±11.7 2.3±1.7
2 128 1 4 42 61 85 27.4±13.6 11.4± 9.2 2.1±1.1
3 90 1 4 36 49 93 40.4±16.2 17.4±12.5 3.1±2.1
4 73 1 3 44 65 91 25.2±12.6 10.4± 9.1 2.1±0.9
5 84 1 5 31 48 60 33.4±18.7 17.5±11.3 2.4±1.6
Average 38 55 83 33.0±16.8 14.7±10.8 2.4±1.5

Given the ground-truth (GT) for all cells in a sequence,
the number of restarts is fixed and is the same for all three
methods. A track is restarted after an occlusion or when there
is more than a 90◦ directional change in cell motion between
adjacent frames. Note that these skipped frames are not in-
cluded in the distance error metric. We use a bounding box
(whose dimension is about the average cell size) with its cen-
ter based on the algorithm estimated centroid. The recall for
a sequence is defined as the ratio of number of frames where
GT-BBox and Algorithm-BBox overlap by at least 50%, di-
vided by the GT length for all cells. Note that with manual
restarts, recall is a more suitable measure.

Table 1 shows that each of the three steps in the proposed
approach is important. Average improvement in tracking er-
ror of RPF over PF is 56% and that of RBPF over RPF is
83%. Average recall of RPF is 45% higher than PF and aver-
age recall of RBPF is 51% higher than RPF. The superiority
of RBPF over RPF and PF is further qualitatively illustrated
in Fig. 2, which shows the tracking results for two cells over
five different frames from Sequence 1. The ground truth (cell
centroids) are shown as red circles. In PF, stage motion is not
corrected, so predictions drift. The measurements for PF are
taken from the actual unregistered images where the effects
of poor illumination and contrast are also present leading to
large tracking errors. In RPF, although we correct for stage
motion and illumination variation, no background removal is
applied resulting in many false alarms and erroneous mea-
surements. In RBPF, we reduce the error due to stage motion
and also correct for illumination variation. Then using back-
ground modeling and subtraction we obtain a more accurate
set of cell detections, for which PF provides better predictions
and tracking accuracy. The average execution time of RBPF
is 7.1 seconds per frame on a standard PC (Intel core i5, 6GB).

4. CONCLUSIONS AND FUTURE WORK
In this paper, we propose a systematic algorithm to track satel-
lite cells moving on the 3D surface of myofibers in timelapse
brightfield video microscopy. This problem is challenging
due to satellite cells moving out of the focal plane which
makes them difficult to detect, frame to frame jitter from stage
motion and other factors. In the first step, we perform im-



(a) Ground Truth (b) PF

(c) RPF (d) RBPF

Fig. 2. Results of tracking two satellite cells over 5 frames (005-009) in Seq. 1 with center of bounding boxes being estimated cell centroids.

age registration to correct for jitter and illumination variation.
Next, we model the background by estimating local medi-
ans over a group of frames and subtracting this background
model from the registered image to obtain robust cell move-
ment detections. Finally, particle filter-based tracking is used
to predict and associate the position of the cells using the de-
tections. In the future, we plan to handle problems with out of
plane motion and abrupt changes in cell movement direction,
stationary cells [18], dividing cells and to eliminate the need
for manual restarts [19], as well as speed up the algorithm.
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