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Abstract—Authentication of digital media has become an ever-
pressing necessity for modern society. Since the introduction of
Generative Adversarial Networks (GANs), synthetic media has
become increasingly difficult to identify. Synthetic videos that
contain altered faces and/or voices of a person are known as
deepfakes and threaten trust and privacy in digital media. Deep-
fakes can be weaponized for political advantage, slander, and to
undermine the reputation of public figures. Despite imperfections
of deepfakes, people struggle to distinguish between authentic and
manipulated images and videos. Consequently, it is important to
have automated systems that accurately and efficiently classify
the validity of digital content. Many recent deepfake detection
methods use single frames of video and focus on the spatial
information in the image to infer the authenticity of the video.
Some promising approaches exploit the temporal inconsistencies
of manipulated videos; however, research primarily focuses on
spatial features. We propose a hybrid deep learning approach
that uses spatial, spectral, and temporal content that is coupled
in a consistent way to differentiate real and fake videos. We
show that the Discrete Cosine transform can improve deepfake
detection by capturing spectral features of individual frames. In
this work, we build a multimodal network that explores new
features to detect deepfake videos, achieving 61.95% accuracy
on the Facebook Deepfake Detection Challenge (DFDC) dataset.

Index Terms—deepfake detection, deep learning, multi-modal,
computer vision

I. INTRODUCTION

Recent advances in synthetic media have posed a great
threat for individual privacy, trust, and transparency of media.
Resources that were once used for harmless activities on
Snapchat and Instagram can now be used to manipulate the
words of politicians [1] or feature non-consenting individuals
in pornographic content [2]. While the production cost to
create a photo-realistic product was once very expensive,
advancements in artificial intelligence and computer vision
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have brought powerful video editing to the fingertips of curious
individuals. When these technologies are used to swap the
image of one person onto the body of another or to generate
photo-realistic facial expressions and realistic dialogue, they
create what are known as deepfakes. Generative Adversarial
Networks (GANs) and Variational Autoencoders are the pri-
mary technologies that make these deepfakes possible. Though
some users hope to do some good with this technology [3],
the most prominent platform of deepfake appearances comes
in the form of pornography [2], and the nefarious uses do
not stop there. Fortunately, governments have become more
aware of the dangers of this synthetic media on democracy
and the spread of misinformation and the violations of civil
liberties, but creating a deepfake is arguably easier than accu-
rately classifying the authenticity of a video. As more tools
become available and sophisticated for creating deepfakes, it
is important to move deepfake detection tools in the same
direction.

The recent uptick [2] in synthetic media online poses a
threat of authentic content too. For example, amid health
concerns and a lack of public appearances, the Gabonese
President appeared in an address that appeared synthetic [4].
Following this video, a military coup was launched, some cit-
ing the presumed manipulated video as inspiration. However,
the video has been evaluated by deepfake detection algorithms
[4], and it has been classified as authentic. Moreover, some
politicians have used the existence of deepfakes to discredit
authentic content to avoid persecution and punishment for their
actions [5].

As the technology has improved, evidence suggests that
a human guess is not marginally better than a coin flip
[6]. Though the artifacts created by some deepfake methods
are sometimes easier to identify than others, these artifacts
are becoming increasingly difficult for humans to detect [6].
Fortunately, some manipulation indications that the naked eye
cannot detect can be identified by a computer [7]. Nonetheless,
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the difficulty of detection will continue to increase, and it is
important that deepfake detection methods stay up-to-date with
successful deepfake generation techniques in order to achieve
successful classification of a video’s authenticity.

Our model is designed to achieve success in this general-
ization. In this work, we propose a multimodal network that
combines recent promising approaches in deepfake detection
to accurately classify content as real or fake. Our results
are based on a subset of data sampled from the Facebook
Deepfake Detection Challenge [8]. We process visual neural
features, visual spectral features, audio spectral features, and
utilize transfer learning with XceptionNet [9], LipNet [10],
and DeepSpeech?2 [11]. We introduce a new method of spectral
feature analysis with the Discrete Cosine transform, and show
that it can be effective in improving deepfake detection. Our
model is segmented into multiple sub-networks, which we
test independently to evaluate each sub-network’s significance.
We consider speed regarding our methods to process and
extract meaningful features, and accuracy in evaluating the
success of our model. We compare our model to the winner of
the Deepfake Detection Challenge on the Deepfake Detection
Challenge Dataset. Our code has been made publicly available
[12].

II. RELATED WORK
A. Face Manipulation and Generative Adversarial Networks

Ever since the introduction of Generative Adversarial Net-
works (GANs) [13], researchers in deep learning have in-
creasingly focused on this area of research; most notably, in
computer vision applications [14]. GANs introduced a method
of competitively training two separate neural networks in
which the goal of one network, the generator, is to create
synthetic data that causes inaccurate classification by the other
network, the discriminator. Thanks to the novel architecture of
GAN:S, significant advancements have been made in areas like
semantic segmentation [15], [16], [4], style transfer [17], [18],
[19], [20], realistic image generation [21], [22], [23], image
super-resolution [24], [25], [26], and image completion [27],
[28], [29]. Most notably, though, these methods can be used
to generate realistic deepfakes.

Korshunov et al. [30] utilize advancements in style transfer
methods with generative models (GANs [13] and Convolu-
tional Autoencoders [18]) and incorporate their own network
with a multi-image style loss for face-swapping. They also
match lighting conditions of the target image and the syntheti-
cally produced image. Their networks are able to produce face-
swapped images in near-real to real time. Averbuch-Elor et al.
[15] approaches face-swapping differently by requiring only
one image of the target subject. Additionally, this method is
effective in animating videos of a subject. The First Order Mo-
tion Model [31] introduced a similar method of single target
animation but extends beyond just facial manipulation to full
body reenactment. Using a Taylor expansion approximation,
they define the key points for movement and apprehend to
those key points local affine transformations which, paired
together with the image source, are sent through a generator

network to produce the animated video. To improve their
model, they incorporate an occlusion-aware generator that
infers hidden elements based on image context. Face2Face
[32] introduces real-time facial reenactment using a single
target video. To accomplish this, target and source actors are
tracked with a pixel-accurate photometric energy minimization
technique. Then, the expressions of the source actor are ren-
dered on the target actor using subspace deformation transfer
as introduced by [33] to build a modified template of the target
actor which can then be rendered on the original image. The
mouth of the subject is also refitted using a similarity met-
ric and frame-to-cluster matching strategy and is temporally
smoothed by locating an accurate mouth shape between the
target frame and last rendered frame. The maintenance of
target mouth shape helps improve the photo-realism of the
video sequence.

Because of the variety of techniques used in deepfake
generation, developing a network to identify the distinguishing
features can be difficult to generalize without data that consists
of these many techniques. We recognize the unique qualities
of deepfake generation methods and train our model on a
dataset with deepfake videos created using various generation
methods.

B. Audio Manipulation Methods

The production of seamlessly integrated, separate source
video and audio streams is a relevant challenge for researchers
focusing on audio-driven facial reenactment. Though this
subject has been of interest for the last few decades, recent
advances have become most relevant. Suwajanakorn et al.
[34] trained a recurrent neural network on the mouth shape
of raw audio on President Obama to recreate a synthetic,
photo-realistic videos of him based on the audio input of his
voice. The Speech2Vid [35] model is used to render audio
on a target subject for both still photos and video sequences
without requiring the target to be part of the training data.
Vougioukas et al. [36] expand on the usage of still images
and subject independence by creating a realistic video of a
talking head based on audio input. They use a temporal GAN
with a frame discriminator and a temporal discriminator to
add natural facial expressions and blinks to the subject image.
The same researchers expanded on their own work in [36] by
adding a second temporal discriminator to ensure both audio-
visual correspondence and facial expressions are captured in
the video. Neural Voice Puppetry, as introduced in [37], uses
a deep neural network to produce photo-realistic synthesizing
of audio onto any target subject. They develop a latent audio
expression space to generalize the expression of lips for given
phonemes and speech style, allowing for the rendering of
photo-realistic videos using input speech or text.

Because audio and visual elements are often separated
in these generative models, there are likely to be subtle
misalignments in the audio and visual features, whether in
the streams themselves or in mismatches between phonemes
and visemes. Often, the movement of the mouth does not
reflect natural human mouth motion, mostly due to frame by
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Fig. 1: Flowchart of the proposed multimodal network. Each video goes through a series of pre-processing steps and pre-trained
models. We use these models’ final layer of features concatenated with spectrogram features and visual spectral features in a
complex fusion into multiple Long Short Term Memory Networks and through a final classification layer to determine whether

a video is real or fake.

frame synthesis. These methods inspired consideration for our
LipSpeech model, as defined in Section I'V-C.

C. Deepfake Detection Strategies

It has been noted that many deepfakes possess notable
imperfections as a result of harsh shadows [4], face occlusion
[34], and inaccurate geometry estimates [38]. Some imper-
fections that result from deepfakes are heterochromia, which
is the different coloring of irises, or specular reflection [38].
Deepfakes can be exposed based on inconsistencies of the
position of central facial landmarks in relation to a face’s outer
contour landmarks [39]. Additionally, it may be common for
deepfakes to show patterns of infrequent blinking [40]. One
imperfection noted by Agarwal et al. [41] is related to the
inconsistencies between the visemes and phonemes in videos
involving the manipulation of the mouth. Li and Lyu [42]
propose a faster and less data-dependent algorithm that focuses
on the artifacts, specifically resolution inconsistencies, caused
by the affine transformation when a face is rendered on top
of another. However, some of these spatial artifacts may be
indistinguishable from artifacts caused by video compression
[6], which is why it is important to continue researching some
other indications of synthetic media that may not be in the
spatial domain. A recent method proposed by Durall et al. [7]
achieves good results by identifying the differences between
the frequency domain analysis of real and deepfake subjects.
The success was heavily favored toward higher-resolution
sources, however, and, as mentioned, manipulated media does

not need to be in high definition to be effective. We approach
our feature analysis similarly, but we use the Discrete Cosine
transform instead of the Fourier transform.

III. DATA

In 2019, Facebook introduced a new dataset for the Face-
book Deepfake Detection Challenge [8]. This dataset consists
of over 128 thousand videos, 83% of which are fake videos,
with 3,426 paid and consenting actors that, in its raw form,
totaled 25 terabytes of data. This data involved actors of
different races, age, gender, and mannerisms and included
distractors, occlusions, and variations in movements, frame
rate, audio sample rates, orientation, number of actors per
video, and sound environments. Additionally, the methods
used to create the deepfakes varied and were not labeled.

To train and test our model, we sub-sampled 5,000 videos
from this dataset with balanced labels: 50% real videos and
50% fake videos. We split the data into training and testing
data with a 90%:10% split, respectively, resulting in 4,500
videos for training and 500 videos for testing. Each of these
videos were approximately 10 seconds in length.

IV. METHODS

A. Multimodal System Overview

In order to accurately distribute the relevant data to each
model in our network, we must pre-process our input video
into 2 forms. Our model, NOLANet, as shown in Fig. 1, takes
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an input video at a normalized frame rate of 30 frames per
second and extracts each individual frame. NOLANet takes
the audio from the input video in its raw form. These features
are concatenated to form the input features into multiple
Long Short Term Memory (LSTM) networks, which serve to
encompass the visually embedded features and the aligned
audio and visual features. We detail these methods in the
following sections.

B. Feature Extraction

1) Face Detection: The primary region of focus for creating
deepfakes is the area encompassing the head and face, so
for deepfake detection, all features outside of this region can
be disregarded. We use a pretrained BlazeFace model [43]
to extract this face region. Each face region is cropped and
resized to 128x128 pixels, maintaining aspect ratio with a
buffer area around the face the make it square. Because some
videos contain more than one face, we include an Intersection
Over Union (IOU) score using the bounding boxes around the
face to ensure the same face is detected in each frame. If the
10U score is 0, we assume the face is a new one and this new
face is disregarded. Only faces with an IOU score greater than
0 are considered (except for the first frame). For each video,
every face is saved with a label of its frame index, resized to
299x299 pixels.

2) Facial Landmark Extraction: After faces are detected
and saved, we use the Face Alignment Network (FANet) [44],
[45] to detect the facial landmarks. Following, we perform an
affine transformation to normalize the position of landmarks.
Three bounding boxes are extracted: one surrounding the eyes
and eyebrows, one surrounding the nose, and one surrounding
the mouth. Using the center of these landmarks for each
landmark, we create a buffer in each x and y direction,
establishing a 2:1 ratio for the eyes/eyebrows and the mouth
and 1:1 ratio for the nose. This entire procedure, in tandem
with face detection, is shown in Fig. 2.

3) Discrete Cosine Transform: Fig. 3 details our approach
for analysis in the frequency domain (spectral features) of
landmark images. We adopt a similar approach to the method
used in [7] to extract spectral features, but we choose to utilize
the Discrete Cosine transform (DCT) instead of the Discrete
Fourier transform (DFT). The intuition behind this decision
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Fig. 3: Anti-diagonal Average

is based on the identifying components in the imaginary
parts of the DFT. The DFT keeps all the image information
in a complex map (that can be split into a real magnitude
map and a real phase map), but most of the relevant visual
information that can be used to reconstruct the original image
is present in the phase map. DCT, however, keeps all the
spatial information in a single real map that provides a more
meaningful aggregation and guarantees better preservation of
information. The DCT is calculated at each landmark bounding
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box with a minimum dimension of 128 pixels. For the deep
learning steps that use this DCT information, it is required that
these features be one-dimensional instead of two-dimensional.
To reduce this dimensionality, we calculate the anti-diagonal
average of the DCT map 3. To visualize this DCT embedding,
we use a DCT-Spectrogram shown in Fig. 4.

4) Spectrogram: The first step for audio processing is
the generation of spectrogram features. To ensure the audio
features temporally align with visual features, the sampling
windows must be the same, that is, the window size for the
spectrogram input sample must match the time each frame is
present in the video. The window size, w, in milliseconds, is
calculated as follows:

1
Y= Fps

For our training examples, the most prevalent frame-rate was
30 FPS. We use this frame-rate as the basis for calculating the
window size w = 33ms. If we assume an input discrete audio
signal to the Short-Time Fourier transform to be

i = [8i,1, 8,2, 50 k]
where the number of samples k¥ = w x fs; and f, being the

audio sampling rate, then the Short Time Fourier transform of
S

gi = STFT(S_;) = [Si,la Si,lv ceey Si,l]

is calculated as an audio feature vector of the given window.

DCT of one frame

DCT Spectrogram

Frequency Index (k)
apnjubepy

Fig. 4: Example DCT Spectrogram.

5) Transfer Learning:

XceptionNet: XceptionNet [9] has proven its efficiency
and accuracy in image classification tasks. More specifically
it has also been used successfully for deepfake detection [6].
We use XceptionNet pre-trained on the ImageNet [46] dataset
as a feature extractor for the individual frames of each face.
Let’s assume a sequence of images I = {I,ls,...,I,} of
length ¢, with each image I; € R299%299%3  The output of
this image sequence in XceptionNet is a sequence of features
X = {X1,X,,..,X,} with X; € RS We process the
XceptionNet feature sequence in a 2-layer LSTM network
that will be thoroughly described later in this paper. For our
experiments, we choose the input sequence size ¢ = 30, which
is equal to one second of a video.

LipNet: LipNet [10] is used as a lip reading network.
This network outputs a transcript by decoding text from the
movement of a speaker’s mouth. Similar to XceptionNet, we
use this network on our face image sequence I as a feature
extractor to produce an output sequence L = {L1, Lo, ..., L}
with L; € R5%2. We hypothesize that the output of this
network contains the necessary lip movement information that
we can further use in tandem with our audio features to detect
possible discrepancies.

DeepSpeech2: Using a pre-trained implementation of
DeepSpeech2 ( [11], [47]) proved challenging because of its
input size. The model is based on a spectrogram that contains
a window size of 20 ms and a window stride of 10 ms. All
other temporal input data in our models is a window size of
33 ms (1 frame of video at 30 fps), so aligning the output
features of DeepSpeech2 and all other features of our model
cannot be done simply. To overcome this challenge, we prepare
one LSTM for all temporally-aligned visual features and one
LSTM for the DeepSpeech?2 features. We achieve alignment
with sequentially appended inputs for each LSTM. The visual
LSTM uses thirty sequential frames, which achieves a time
length of 1 second, and the DeepSpeech2 LSTM uses 50
sequential input features, which achieves a matching time
length of 1 second. These output features are then fused as
input into another LSTM that outputs a binary classification
of “real” or “fake”.

6) Feature Alignment: When working with a multimodal
network that processes both visual and audio information
sequentially, it is important to take into consideration the
video-audio temporal consistency. For this reason, we propose
an alignment technique (Fig. 5) that ensures a near-perfect
temporal alignment. This ensures that our methods will use
any misalignment in an input video as a potential indication
of synthetically generated media.

C. Sub-Networks

LipSpeech: Inspired by the work in [41] and [48], we design
a sub-network to evaluate the alignment of visual data and au-
dio data streams, as shown in Fig. 7. Specifically, we compare
the output of text predictors, LipNet and DeepSpeech2. LipNet
[10] is designed to predict text based on a lip reading model,
and DeepSpeech2 [11] is designed to predict speech based
on the audio. The idea of this sub-network is based on the
assumption that these two pre-trained models are inherently
aware of visemes and phonemes, respectively. The inputs to
each of these models are sequences of 1 second, resulting in an
output feature vector representing one second of translated text
based on the audio and one second of translated text based on
the mouth movements. We extract the feature vectors before
the text translation from each of these models and feed these
as the input into an LSTM (Fig. 6).

FourierNet: The spectral feature-focused sub-network of
NOLANet evaluates the significance of the spectral infor-
mation of visual features as calculated by the DCT of the
landmarks and the spectral information of the audio with the
Short Time Fourier transform of the audio sample. Each of
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these inputs span temporally for 1 second. These features are
concatenated, giving them a total feature size of 1495, and sent
through an LSTM (Fig 6). The entire network of FourierNet
is outlined in Fig 8.

VSNet: The image-based sub-network of NOLANet evalu-
ates only the information provided by the visual features of a
video. This sub-network evaluates the temporal features from
the Xception Network features and the 1D DCT Features. The
XceptionNet output features are of size 2048, and the sum of
each 1D DCT of the three landmark bounding box totals 765.
These features are concatenated, making the total input size
2,324 features, and sent through an LSTM (Fig. 6) with a
temporal window of 1 second. This model is shown in 9

D. Training Configuration

In order to get an initial validation of our multimodal net-
work design, we train a subnetwork that consists of Xception-
Net and our final 2-layer LSTM network. We use XceptionNet
re-trained on ImageNet as our feature extractor and we do not
perform any fine-tuning on it. The LSTM network consists of
two hidden LSTM layers of size 1024 followed by two fully
connected layers of of 1024 nodes followed by a final output
layer of 2 nodes. The videos are randomly sampled from the
original DFDC dataset to ensure a decent distribution in terms
of subjects, lighting, and other video settings.

Dataset: We train the LSTM network on a fraction of
DFDC [49] dataset of 5,000 videos (approximately 1.5M
frames. This dataset is composed of 50% deepfake videos and
50% real videos. We use 90% of the data for training and 10%
for validation.

Hyperparameters: As mentioned before, we train only
the LSTM network by optimizing cross-entropy using Adam
optimizer [50] loss with learning rate of a = 10~°. We run
the training for 1,000 epochs with a mini-batch size of 500.

V. RESULTS

We tested each sub-network to analyze its individual contri-
butions and determine whether it should stay within the overall
model. The results are described for each sub-network, and can
be seen in Table I.

LipSpeech

LipSpeech, which evaluates the translated text based on the
mouth movements and spectrogram of the audio, does not
appear be very meaningful in deepfake detection on the DFDC
dataset. Testing accuracy was 59.21%. Though these results
show limited improvement to random guessing, they support
the claim that audio-visual disharmony is present in deepfakes,
as proposed in [41] and [48]. With advancements in lipreading
models, better results are likely to follow.

FourierNet

FourierNet, which evaluates the significance of features
from the frequency domain of visual and audio, suggests to
not be very meaningful in deepfake detection on the DFDC
dataset. Testing accuracy was only 50.20%. These results

TABLE I: Training and Validation Results

Network Evaluation dataset Accuracy
Xception + LSTM DEDC Partial training 54.82%
VSNet L 61.95%
- (4,500 training and
LipSpeech 500 validation) 59.21%
FourierNet vahdat 50.20%
Selim Seferbekov Full DFDC training 82%
(DFDC Winner) DFDC hidden test set 65.18%

suggest there is no correlation between spectral features in
the audio domain and spectral features in the visual domain.
Given that audio-visual disharmony in the spectral domain are
not related to the believability of a deepfake, these results
are unsurprising. However, we believe this method could be
expanded to specifically audio-driven generation of deepfakes,
in which audio is dubbed to match the movement of the mouth
in a video, as this method of deepfaking, if perform well, could
have the potential to undermine the authenticity of words of
any public figure. Should this method become prevalent in
deepfakes, there are likely to be artifacts in the spectral domain
of audio, and there may be a relationship to artifacts in the
visual domain.

XceptionNet

We tested XceptionNet features with an added LSTM
component (Xception + LSTM) in isolation for deepfake
detection. The results on the validation set achieved accuracy
of 54.82%. The visual features that XceptionNet extracts from
the RGB information on individual frames are proven to be
very effective in image classification [9]. However, we found
that these features by themselves do not result in a good
detector of deepfakes. XceptionNet focuses on high level
features to make a frame-based classification of the general
class of an image; hence, it does not focus too much on
more nuanced features and discrepancies. When we combine
XceptionNet with other features, it performs better.

VSNet

For the sub-network VSNet, which consisted of Xception-
Net features concatenated with the 1-D DCT of facial land-
marks, we improved the results on the isolated XceptionNet
Features. This sub-network achieved accuracy of 61.95% on
the testing data. These results suggest that the addition of
spectral features to strictly visual neural features can improve
deepfake detection. Moreover, these results suggest that the
DCT can effectively capture the relevant features in the
spectral domain, as opposed to the Fourier transform.

VI. CONCLUSION

In this work, we have designed a multimodal network to
detect deepfake videos called NOLANet. We have shown that
we have been able to widely explore the Deepfake Detection
Challenge dataset by extracting a wide spectrum of features.
We introduced new methods for extraction of features in the
frequency domain and a new model hypothesis for detecting
misalignment between audio and visual features in deepfakes.
In testing each sub-network, we determined that the only
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relevant sub-networks were LipSpeech, which found audio and
visual discrepancies with text prediction models, and VSNet,
which combined 1-D Discrete Cosine transform features of the
landmarks with the output feature vector from XceptionNet.
This confirms the claim that the inclusion of spectral features
can improve the accuracy of deepfake detection. It also has
revealed that the use of the DCT can be an effective component
in deepfake detection. We are, to the best of our knowledge,
the first to use the DCT to capture spectral features in the
spectral domain.

Despite better-than-random results for LipSpeech, this
model could be tested on different models where mouth
manipulation is guaranteed in the training data to determine
if this approach is more accurate for specific methods of
deepfaking. Additionally, an unsupervised method such as
contrastive loss could be explored to find a separation in
high-dimensional space between DeepSpeech2 output features
and LipNet output features. Though FourierNet was no better
than random, it too could be tested on a new dataset with
confirmed audio manipulation; however, we do not suspect
spectral disharmony will be a significant indicator of video
manipulation. Training these networks end-to-end may also
help the networks find more meaningful features.

Deepfake detection continues to be a challenging task for
machine learning models and humans alike as models to create
deepfakes improve. This work reveals this growing challenge,
but also shows promise in adding features like the DCT, or
using lipreading models in tandem with speech-to-text models.
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