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Abstract The need for persistent video covering large geospatial areas using em-
bedded camera networks and stand-off sensors has increased over the past decade.
The availability of inexpensive, compact, light-weight, energy-efficient, high reso-
lution optical sensors and associated digital image processing hardware has led to
a new class of airborne surveillance platforms. Traditional tradeoffs posed between
lens size and resolution, that is the numerical aperture of the system, can now be mit-
igated using an array of cameras mounted in a specific geometry. This fundamental
advancement enables new imaging systems to cover very large fields of view at high
resolution, albeit with spatially varying point spread functions. Airborne imaging
systems capable of acquiring 88 megapixels per frame, over a wide field-of-view of
160 degrees or more at low frame rates of several hertz along with color sampling
have been built using an optical array with up to eight cameras. These platforms
fitted with accurate orientation sensors circle above an area of interest at constant
altitude, adjusting steadily the orientation of the camera array fixed around a nar-
row area of interest, ideally locked to a point on the ground. The resulting image
sequence maintains a persistent observation of an extended geographical area de-
pending on the altitude of the platform and the configuration of the camera array.
Suitably geo-registering and stabilizing these very large format videos provide a vir-
tual nadir view of the region being monitored enabling a new class of urban scale
activity analysis applications. The sensor geometry, processing challenges and scene
interpretation complexities are highlighted.
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1 Introduction

Wide-area persistent airborne video, also known as wide-area motion imagery
(WAMI), wide-area persistent surveillance (WAPS), wide field-of-view (WFOV)
imaging or very large format video is a newly evolving imaging capability that en-
ables persistent coverage of geographical regions on the order of a few to tens of
square miles. The enabling technology is the use of airborne camera arrays com-
bined with computational photography techniques to integrate information from
multiple cameras spatially, spectrally and across time in a consistent manner. Es-
sentially a moving airborne camera array provides a denser sampling of the urban
4D light field or plenoptic function [1, 15]. The time-varying light field can be used
in unique ways for large scale detailed 3D scene reconstruction, monitoring activ-
ity patterns of vehicles, people and animals, rapid change detection or providing
continuous situation awareness for remote operations at high resolution. A network
of such airborne camera arrays would be ideally suited for exploring a range of
novel applications, previously considered technically infeasible or cost prohibitive,
in urban monitoring, planning and design, ecological surveys, agriculture, traffic
analysis, law enforcement, critical infrastructure protection, event security, emer-
gency response after natural disasters (i.e., floods, hurricanes, tornadoes, forest fires,
landslides, earthquakes, tsunamis), monitoring environmental disasters from anthro-
pogenic activities (i.e., oil spills, pollution, mining, deforestation), search and res-
cue, border patrol, tele-operation, and defense.

Persistent wide-area airborne imaging typically uses a continuous circular flight
path in a fixed 3D plane perpendicular to the local ground plane. Figure 1(a) shows
an example persistent flight path along with the ground projected trajectory of an
elevated point on a building in the scene. The varying viewpoints of the same sta-
tionary (or nearly stationary) object induces an apparent motion or wobble of those
objects that are above the ground plane, with taller objects having a larger wobble.
The parallax induced wobble poses both human factors and computational chal-
lenges for the visual interpretation of wide-area persistent surveillance slow video.
An eight-camera optical array constructed by Persistent Surveillance Systems that
was used to collect the aerial imagery described in this paper is shown in Fig. 1(b).
The configuration of the cameras, focal lengths, pointing directions and overlap re-
gions between adjacent camera FOVs are specified in Fig. 1(c) and (d). An airborne
camera array can be used in persistent or stare-mode as well as survey or along-track
mode. The latter mode is useful for rapidly sampling a large geographical region and
can operate at approximately 600 square miles per hour using the eight-camera ar-
ray shown (4 mile wide swath and speed of 150 mph). For the same swath width
and airborne platform speed, a short video sequence or cliplet provides coverage of
a given location for nearly 100 frames in survey mode. The visible channel imagery
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Fig. 1 Persistent wide-area airborne data collection using an eight-camera array. (a) A wide area
circular orbit (in blue) of the aircraft and ground-plane trajectory (in red) of a 3D corner point on
the lower building with geometric occlusions shown. (b) Eight-camera imaging array with varying
optics built by Persistent Surveillance Systems shown mounted inside a long-endurance Cessna
C-207 aircraft (photo by Ross McNutt). (c) Camera numbering, focal lengths and pointing direc-
tions for physical layout of the camera array. (d) Image-plane numbering of the projected camera
views showing inter-camera overlapping regions where seams are likely to occur in the geo-regis-
tered image

can be augmented with other sources of information including infrared imagery
for nighttime coverage, and hyperspectral imagery to characterize material proper-
ties for object identification. The importance of synthetic aperture radar (SAR) and
moving target indicator (MTI) radar for synergistic all-weather, day-and-night cov-
erage in wide-area surveillance was recognized early-on by [9]. In this paper we
focus on the persistent mode of observation using visible channel imagery.

Each camera in the eight-camera array produces an 11 megapixel 8-bit visible
channel grayscale image at one to four frames per second and of size 4096×2672
that is geo-registered to an 8K×8K or 16K×16K image mosaic. At the higher spa-
tial resolution and higher temporal sampling this data volume is about four terabytes
per hour or the equivalent of about 120 UAV standard definition 30 frames per sec-
ond video streams. At a platform altitude of 1370 m (about 4500 ft) the nominal
ground resolution, ground sampling or separation distance (GSD) is between 20 to
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Fig. 2 Wide area image of North Philadelphia with area of interest inserts showing the high reso-
lution available in the geo-registered mosaic. Image provided by Ross McNutt

25 cm (0.66 to 0.82 ft) per pixel; at an altitude of 2440 m (about 8000 ft) the GSD
reduces to about 50 cm (1.64 ft) in the central part of the image with decreasing
resolution towards the image periphery. At the lower altitude each mosaicked im-
age frame covers about four square miles and at the higher altitude about 16 square
miles. Examples of images collected at both resolutions, for several geographical
regions and up to two frames per second are used in this paper. Figure 2 shows a
portion of a sample 16K×16K wide area image over North Philadelphia, Pennsyl-
vania taken on March 13, 2008 at the lower altitude. We will refer to this wide-area
persistent video data set as the Philadelphia sequence. The area of interest inserts in
Fig. 2 show zoomed views and the high resolution available in the wide-area image
mosaic. Visualizing and analyzing such large time-varying data sets in an interactive
manner requires careful software design of data structures, display tools and human
computer interfaces to improve usability, data access and information presentation
[2, 8, 12, 21].

The large oblique or wide field-of-view (WFOV), circular orbit of the airborne
platform, unsteady ground plane, time-varying occlusions and stabilization for par-
allax mitigation leads to a number of challenges in developing robust visual feature-
based object tracking algorithms [25]. The fact that a large area is being continu-
ously sampled using a camera array leads to a new paradigm for analyzing such
videos, largely stemming from non-uniformity in instantaneous optical characteris-
tics and platform motion. At any given instant, the areas in the center of the scene,
usually around the fixation ground-point, will be observed at the highest resolu-
tion, while the image computed across the rest of the WFOV will originate from
resolution-limited highly oblique line-of-sight data using the camera-array configu-
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ration in Fig. 1. Another significant challenge is the scale of the activity occurring
in the scene, which is similar in complexity to simultaneously analyzing a dense
distributed network of hundreds to thousands of airborne or ground-based video
cameras. Wide-area motion imagery of urban areas produce tens of thousands of
interrelated spatio-temporal events particularly in relation to moving objects that
are interacting in a highly non-linear dynamical fashion. Multiobject identification,
automatic tracking including detection, track initiation, track management, mitiga-
tion of distractors and track termination applied to such a large collection of moving
objects poses numerous computational, algorithmic and database challenges.

The spatially varying optical transfer function across the WFOV, non-uniform
spatial resolution, low frame rate, and high parallax of urban structures using air-
borne camera arrays often do not satisfy the usual assumptions made by many ex-
isting vision algorithms. Well known approaches for image registration, video sta-
bilization, optical flow analysis, and structure from motion algorithms [5, 22, 23,
26, 32–35, 38] have to be revisited because of the spatially varying optics, inherent
heterogeneity of the large areas being monitored combined with the low temporal
sampling frame rate and geometric complexity of the scene. Some applications of
(non-persistent) WFOV images collected using bursty sampling to address the low
frame rate limitation for vehicle tracking and traffic pattern analysis using aerial
imagery are described in [13, 28]. A unique way of exploiting the short time dif-
ference between dual sensor (panchromatic and color) images acquired by satellites
such as QuickBird to estimate MTIs for wide-area periodic surveillance is described
in [7].

In this chapter we focus on persistent WFOV image sequences and the challenges
associated with their analysis which are broadly described using examples. Figures 3
and 4 show perspective changes in building shape and occlusion events that make
frame-to-frame registration, stabilization, recovering 3D structure and moving ob-
ject tracking tasks more challenging. Both figures are from the Philadelphia wide-
area motion imagery sequence. In Fig. 3 the view of the church building changes
from an oblique view to a more nadir view across the four frames (700 × 500 pix-
els) that are each 10 sec apart starting at frame 45709. In Fig. 4 the view of the
triangular office building and the geometric occlusion of surrounding structures is
seen across these selected four frames (1800 × 1600 pixels) that are sampled 40 sec
apart also starting at frame 45709. Tracking objects through such long occlusions
may be feasible by combining additional information from ground-based video net-
works, or using multiple wide-area and other complementary airborne platforms to
improve total coverage. Feature extraction, texture descriptors and point correspon-
dence methods [11, 17, 27, 34] can be easily overwhelmed by the large number
of spurious matching points with similar configurations detected at different geo-
altitudes and the symmetric, repetitive structure of buildings as apparent in Fig. 4.

Objects moving steadily across the WFOV can persist and stay visible for long
durations with intermittent to extended occlusions. However, stabilization, mosaick-
ing, moving object detection, blob segmentation, track initiation, reacquisition, oc-
clusion handling and pair-wise relations between moving targets are complex vision
tasks even for regular airborne or ground-based video [3, 4, 10, 24, 29, 36, 37] that
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Fig. 3 Viewpoint induced changes in the appearance and pose of building structures across short
time periods can be seen in these four regions from the Philadelphia sequence (10 sec apart)

need to be further extended to the WAMI domain to support exploitation of city-
wide and region-wide scene activity analysis. We use radiometric and geometric
characterization, tracking and pose-stabilization to illustrate some of the challenges
in the exploitation of WAMI. A more detailed description of using feature fusion
to improve vehicle tracking in WAMI is described in [25]. It is not our intent here
to focus on any single area each of which merits a dedicated review. Instead, our
aim is to introduce the overall architecture of wide area imaging with steadily mov-
ing camera arrays and describe some of the newly enabled opportunities along with
associated challenges.

2 Spatio-temporal Reflectance Variations

Wide-area motion imagery system performance depends on a large number of fac-
tors that affect image characteristics. The following list is a collection of the more
important factors including: the number of cameras in the array, their relative poses
with respect to each other, the lens optics and FOVs, multiple camera calibration,
radiometric balancing, geo-registration, mosaicking, frame rates, target size, target
speed, clutter, weather, sun-angle, the number of channels and modalities (color,
IR, etc.), the platform altitude, GPS accuracy, inertial measurement unit (IMU) ac-
curacy for measuring pose of the aircraft platform, on-board data storage, down-
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Fig. 4 The tall triangular building creates geometric occlusions of the road, ground-plane level
structures, vehicles and pedestrians due to viewpoint induced wobble that is proportional to build-
ing height

link bandwidth, attributes of the ground processing system, and so on. Radiometric
balancing and geometric registration across the camera array are essential to pro-
duce high quality WAMI mosaics. Geometric registration and radiometric balancing
problems give rise to seams in the overlap regions of the multi-camera image mo-
saic as illustrated in Figs. 5 and 6 respectively. Such deficiencies in image quality
adversely affect downstream image processing and scene analysis modules includ-
ing feature extraction, feature tracking, depth reconstruction and object identifica-
tion. Note that the shape of the geometric seams or overlaps between adjacent image
planes changes with time based on the platform position and pose, and intrinsic and
extrinsic camera-array configuration (see Fig. 1). We use a recently enhanced ver-
sion of the Kolam software tool for interactive visualization of the very large WAMI
mosaics [21].

The combination of sensor behavior and scene changes across short time inter-
vals can be characterized by looking at the spatio-temporal variation of measure-
ments such as geo-registration and radiometric accuracy between cameras. Regis-
tration and stabilization problems, significant parallax variations, changes in view-
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Fig. 5 The geometric seams across adjacent camera planes and the induced image distortions in
vehicle and building structures can been seen in WAMI sections of (a) Philadelphia, PA, March
2008, and (b) Cedar Rapids, Iowa, June 2008

Fig. 6 The radiometric
seams between three adjacent
camera image planes
requiring correction are
evident in this image showing
flooding around a farm in
Oakville, Iowa, June 2008

point and changes in illumination are a few of the factors that can cause abrupt
changes in scene quality over time. We use the Wasserstein distance (equivalent to
the Earth Mover’s Distance (EMD) under certain conditions) to measure the spatio-
temporal variability in the intensity histogram distributions. Interframe differences
can be measured in terms of pixel-level gradient changes, regional-level histogram
changes, optical flow motion vectors, frame-level feature statistics, or other appro-
priate video-based measures. Distribution based techniques provide global infor-
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mation about an image and are less sensitive to small camera motions and object
motions compared to spatial interframe differences. Let Pa(y) and Pb(y) be two
normalized density functions (i.e., histograms) and Fa(y) and Fb(y) be their cor-
responding cumulative distributions. Then the linear Wasserstein distance, W1, be-
tween Pa(y) and Pb(y) across an intensity range G is defined as [20],

W1(Pa,Pb) =
∫ G

0

∣∣Fa(y) − Fb(y)
∣∣dy. (1)

Since the maximum value of the difference in the cumulative distributions is one,
the maximum value of the integral is G which can be used as a normalization factor.
In the discrete approximation to the Wasserstein distance using summations instead
of integrals, we need to take into account the histogram or density function bin size
in the normalization factor. If the histogram is sampled using a bin size of "h then
W1 should be normalized by (G/"h − 1).

Figure 7 shows temporal changes in the scene reflectance function over a short
time period of 105 seconds for three different geospatial regions from wide-area
persistent imagery of Juarez, Mexico on August 26, 2009, which we refer to as the
Juarez data set. In this case we selected three 512×512 regions or image blocks cen-
tered at pixel locations [5888,5888], [6912,6912], [7936,7936] across 105 frames
starting from frame 48051. The first row shows a representative image sampled
from the center of each corresponding x–y–t spatio-temporal block of image data.
The second row shows the temporal variation of the x–y block graylevel intensity
histograms as 3D surface plots. The third row shows the variability of a horizontal
line profile (at row 256) in the region as a spatio-temporal x–t slice with time in the
vertical dimension. If the images are perfectly registered and compensated for view-
point changes then we would expect vertical lines instead of sinusoidal patterns. The
fourth row shows the temporal variation in the average x–y block graylevel inten-
sity for each region. The vertical axes cover slightly different ranges but the rapid
change in mean reflectance intensity for each spatial region is readily evident and is
primarily due to viewpoint changes resulting in the appearance change of objects.
In the ideal case we would expect a horizontal curve if the mean reflectance for the
block remained constant.

The fifth row shows intensity histogram differences measured using the Wasser-
stein distance with the normalization factor included. The red curve plots the his-
togram difference between each pair of consecutive frames whereas the blue curve
plots the histogram differences with respect to a reference reflectance histogram
based which in this case is based on the center frame, with a small blue circle on the
x-axis marking the reference frame number 53. The discrete approximation to the
Wasserstein distance is normalized by the number of bins in the histogram and mea-
sures the change in the illumination distribution across the scene. The vertical axes
have different ranges to highlight the variability in the reflectance distribution be-
tween images separated by short time periods. When we look at adjacent frames the
variability in illumination as measured using the Wasserstein distance is low, how-
ever, the illumination differences between frames separated by even a few seconds
can be quite large as shown by the blue curves in row 5. In this case there were no
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Fig. 7 Reflectance change in the Juarez data set for three 512 × 512 × 105 image blocks. Row
(a) ROI from center frame; (b) 3D plot of x–y block intensity histograms over time; (c) spatio-tem-
poral x–t slice for row 256; (d) x–y block mean intensity over time; (e) Wasserstein distance plot
between intensity histograms for consecutive frames (red curve) and with respect to the middle
reference frame (blue curve)
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clouds in the scene so the major contribution to the changes in the reflectance distri-
bution are more from viewpoint change than misregistration errors. All three cases
show some gradual cyclical changes over the 105 frames or 105 seconds of video,
apparent both in spatio-temporal slice drift (row 3) and reflectance variation plots
(rows 4 and 5), especially using the Wasserstein distance measured with respect
to the center image frame. The rapid spatio-temporal variation in reflectance high-
lights the fact that in wide-area motion imagery the appearance of objects change
significantly with viewpoint and that such changes need to be modeled for accurate
extraction of visual scene information for object tracking and object structure.

3 Wide Aperture Imaging Model of Camera Arrays

It is well established in physical optics that imaging through a lens is governed by
the Rayleigh principle and various factors associated with geometrical optics and
the design of lenses. The optical energy originating from a distant object captured
by the lens is approximated as a paraxial parallel beam. The total energy captured
in such an imaging system is proportional to the cross-sectional area of the aper-
ture. The image of any paraxial parallel beam is approximated by a blurred spot
whose diameter is inversely proportional to that of the aperture. The relationship is
expressed in the form

dB = 2.4λ(F/#) = 2.4
λf

Da
, (2)

where f is the focal length, Da is the aperture diameter, dB is the blur-spot diame-
ter, and λ is the wavelength of light captured by the lens. The aperture is generally
described in photography as F/# (the F-stop number) and is proportional to the in-
verse of the numerical aperture or resolving power of a lens. It is desirable to have a
large aperture (i.e., low F/#) to produce optical images with higher effective ground
sampling distance or resolution. The mutually interdependent constraints require
tradeoffs between large physical apertures, long focal lengths and limited field-of-
views (FOV), that is telephoto lenses, when imaging distant objects. Larger aperture
lenses with shorter focal lengths, which would be preferred, are difficult to design;
such lenses are usually expensive and likely to introduce severe image distortions.
Additional factors that govern the choice of lenses require a combined analysis of
pixel size of the imaging light sensor, desired object-spot diameter (OSD), stand-off
distance between the object and camera, and the required FOV to cover the scene
of interest. Accommodating depth of field, or variations in the extent and distance
of the object from the camera, is also an important factor in selecting appropriate
lenses.

The design of more flexible imaging systems using camera arrays, lens arrays,
coded apertures, catadioptrics combining lenses and mirrors, spatial light modula-
tion and a variety of other techniques using physical devices and digital processing
is an active area of research. A variety of such computational camera arrays and
optical systems have been built [14, 15, 18, 19]. Very large format or wide area
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imaging systems are based on the design of a wide field-of-view (WFOV) imaging
system using an appropriately arranged array of smaller FOV cameras to achieve
the highest optical resolution across the greatest FOV with the best possible tempo-
ral sampling. We illustrate the key ideas geometrically using a 2D cut through the
principal cross-section of a camera array, showing how the net angle of view (AOV)
can be increased using a specific spatial arrangement of cameras. In the case shown
in Fig. 8 they have been placed on the circumference of a circle. This architecture
can be readily extended to the 3D case for building the corresponding real-world
camera-array system. The goal is to construct a distributed aperture imaging sys-
tem composed of a camera array with multiple focal planes that produces a view
equivalent to that acquired by an ideal WFOV camera with a very large focal plane
detector array.

3.1 Seamless Stitchable Camera Arrays

Desirable criteria and considerations for designing a WFOV multi-camera array are
listed here as a set of guidelines. The design should ensure that the net WFOV is a
simply connected set (without holes) in a suitably represented manifold and without
discontinuities in pan, tilt and azimuth angles in the final image. Overlaps between
individual camera FOVs should be minimal, for the obvious reason of maximiz-
ing the collective WFOV extent. Multi-camera-array calibration should be of simi-
lar complexity to calibrating a single-camera imaging system. The rigid-and-static
relative position and orientation between the cameras can be set to any desired de-
gree of precision and calibrated. Without loss of generality we assume a minimum
separation distance between objects in the scene and the camera array. Image reg-
istration, if required for producing the single-perspective image, should be simple,
easy to compute, and be applicable across a wide range of scene conditions. That is,
any explicit assumptions on the nature of the 3D scene should be minimal for reg-
istering across the camera-array views to produce the equivalent WFOV seamless
mosaic image. In addition, we want to minimize the total computations needed to
reconstruct the WFOV stitched image and reach system performance and accuracy
specifications.

One basic realization of such a design is shown in Fig. 8 using three identical
cameras C,D,E, each with a 24° FOV, equally separated on a circular arc such
that the three-camera array as a whole produces a net WFOV of 72°. Camera D has
been placed such that AD ‖ BC and E has been placed such that BE ‖ AC. Col-
lectively, the FOVs !ADB + !ACB "→ !AdB , and !ACB + !AEB "→ !AeB;
from which it can be shown that the net WFOV at the effective imaging array fo-
cal plane, c is, !ADB + !ACB + !AEB "→ !AcB . In principle, it is possible to
transform the image captured by the cameras, E, C and D to their equivalent coun-
terparts as seen from location c. Such a transformation can be separated into two
distinct cases: (1) distant objects, and (2) nearby objects with respect to the camera
array.
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Fig. 8 Three identical
cameras, C, D and E are
placed such that, lines
AD ‖ BC, and BE ‖ AC.
Line segment AB is
considered a design
parameter governed by other
considerations

Let the size of each pixel be "x ≈ dB , where dB is the blur-spot diameter. Let
the distance between the object and the pupil of the camera through which it is seen
be q . Then dO = q"x/f defines the size of an object patch seen by any pixel. If
the net displacements ‖Ec‖, ‖Cc‖, and ‖Dc‖ are small ($ dO ), then an acceptable
approximation is that the images recorded at c are identical to those seen at E.
Thus, it is acceptable to trivially inherit the image from camera E with minimal
postprocessing, in order to compute its contribution to the WFOV (mosaic) image
that would be recorded at c. A similar reasoning applies to the images acquired by
cameras C and D.

3.2 Geometric Properties of WFOV Imaging Arrays

We describe the global non-linear nature of perspective imaging and local linear
approximations suitable for the analysis of WFOV multi-camera-array images fol-
lowing the notation for single-camera modeling [6, 30, 31]. In general, video cam-
eras project a certain object point X located on opaque objects onto an image point
x = (x, y, z = f ) in the image plane. The image plane is uniquely characterized by
the focal length f of the camera, C, expressed by the equality Z = fC . The projec-
tion model of the image sensor is either perspective or orthographic depending on
the lens characteristics and physical dimensions of the image sensor in comparison
with the focal length of the lens and distance to the object. Loss of depth infor-
mation is inevitable in both types of projections. The intrinsic geometric models
for an intensity camera are illustrated in Figs. 9 and 10. A WFOV imaging sys-
tem, as a whole, mimics a perspective imaging system. However, it produces im-
ages that are locally orthographic since the individual cameras are built with tele-
photo lenses. We refer to the telephoto lens-based images as weakly perspective,
or piece-wise orthographic. Such an insight can be fully exploited in a framework
similar to small-signal analysis used in modeling circuits built with non-linear elec-
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Fig. 9 A single-camera
perspective imaging system
of an object point P and its
projection onto the imaging
plane

Fig. 10 A simple orthographic imaging system model

tronic devices. Temporal analysis of small patches can therefore be studied as if
they are related by affine transformations. At the same time, global analysis of the
WFOV image will almost always exhibit large departures from an aggregate linear
model.

A clear insight into the underlying geometric properties will help approximate
the complex WFOV analysis using suitably partitioned fields of view, each modeled
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as an affine mapping. The irreversible loss of depth information introduced by the
underlying perspective projection can be expressed as




x

y

z



 = P




X

Y

Z



 , where P =





1
λ 0 0

0 1
λ 0

0 0 1
λ



 , λ = Z

fC
, (3)

with z = fC and λ!1. Any point on the ray defined by the vector X = [X Y Z]T
which is aX, ∀a, a #= 0, projects to the same image point x = [x y f ]T . The projec-
tion is non-invertible; thus, given X one can determine x but not the opposite. How-
ever, given a point x on the intensity image, X is constrained to a line (of points)
passing through the focal point O and the image point x. In order to relate mea-
surements between multiple cameras we use superscripts to describe the frame of
reference and subscripts to identify the object of interest. The notation OW

C is used
to describe the position of OC measured with respect to the world coordinate sys-
tem W . Given the absolute position XW of a point, X, measured with respect to the
world coordinate system, both XC and XW are related as follows,





XW

YW

ZW

1



 = TW
C





XC

YC

ZC

1



 , (4)

with the six extrinsic camera parameters collected together in the matrix,

TW
C =

[
αW

C | βW
C | γ W

C OW
C

0 0 0 1

]

, (5)

where αW
C ,βW

C and γ W
C are the direction cosines of the X, Y and Z axes of the

camera, and OW
C is the origin of the camera coordinate system. The matrix TW

C ,
is uniquely characterized by these extrinsic camera parameters and is always in-
vertible. These parameters are easily calculated when the position and orientation
of the camera is known with respect to the absolute coordinate system. They can
also be extracted using calibration techniques. From (3) and (5), it clearly follows
that given xC , additional information is required to uniquely locate XW along the
projective ray,





XW

YW

ZW

1



 = TW
C





λxC

λyC

λfC

1



 ≡ TW
C

[
λ xC

1

]

. (6)

In certain circumstances, it is desirable to model the camera as an orthographic
projection. Practical cameras are inherently perspective. However, favorable condi-
tions occur when the focal length of the camera is much larger than the diagonal size
of the video sensor and/or the lens’ diameter, or the distance to the object is very
large. The non-linearity due to perspective imaging is uniformly distributed since
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the lens covers only a very narrow beam of light, consisting essentially of almost
parallel lines. The orthographic projection approximation is illustrated in Fig. 10. In
contrast with the previous projective camera model, here we have moved the per-
spective projection point to (0,0,−f ) without any loss of generality. In addition
we represent a generic object point conveniently as the sum of an object centric co-
ordinate system and a suitably defined translation. The object centered coordinate
system is defined such that its axes are parallel to the respective camera coordinate
system and its origin is located at Ẑ, which is the average depth or distance to all ob-
ject points (i.e., z-component of the object centroid). The basic equations are similar
to that of the perspective imaging model but differences can be better emphasized if
object points are described with respect to an object centered coordinate system.

Let a point in the scene be represented in the object centered coordinate system
as XC = (XO,YO,ZO) + (0,0, ẐC), where ẐC is the distance from the camera to
the object centroid, then

x = f XO

f + ZO + ẐC
= f XO

(f + ẐC)

(
1 + ZO

ẐC + f

)−1

, (7)

y = f YO

f + ZO + ẐC
= f YO

(f + ẐC)

(
1 + ZO

ẐC + f

)−1

. (8)

In particular, when either ẐC (the average depth) or f takes on very large values,
the resulting projection is of the form

x = lim
ẐC→∞,
f →∞

XO

(
1 + ẐC

f

)−1(
1 + ZO

ẐC + f

)−1

≈ XO

(
1 + ẐC

f

)−1

, (9)

y = lim
ẐC→∞,
f →∞

YO

(
1 + ẐC

f

)−1(
1 + ZO

ẐC + f

)−1

≈ YO

(
1 + ẐC

f

)−1

. (10)

Both XO and YO components of the position vector XO are scaled by the same
amount, and the scale is independent of the exact Z position, ZC = ZO + ẐC , of
the object points. In essence, this is a scaled orthographic projection that preserves
various second order geometrical properties, and it is in fact affine in nature:

[
x

y

]
=

(
1 + ẐC

f

)−1 [
1 0 0
0 1 0

]


XO

YO

ZO + ẐC



 . (11)

Note, we assumed that the origin of the object centered coordinate system was lo-
cated along the camera optical axis and that YO and XO are within the viewing
range.
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3.3 Physical Considerations Governing Camera-Array-based
WFOV Virtual Focal Planes

In general the camera array is constructed using a rigid mechanical structure in
which the cameras, a GPS and a high-precision orientation sensor (inertial mea-
surement unit) are mounted together. The calibration of the pair-wise relationships
between their pointing angles is commonly referred to as boresight-offset calibra-
tion. Since the cameras D and E shown in Fig. 8 have already been rotated, the rays
incident on their pixel plane will suffer minimal loss due to the expected oblique in-
cidence experienced by a camera pointing in the original Z direction of the camera
array. There are two approaches for using the images obtained by cameras D and E.
The first one is to associate with each pixel in its own image a unique direction co-
sine characterizing the underlying line of sight, and simply map that pixel value to a
pixel location on the virtual-image place constructed by extending the image plane
of C. Such a process will imply non-uniform sampling across the image plane. The
second approach is to start off with a uniformly sampled grid of the virtual-image
plane, characterize each pixel by a line of sight, then fetch supporting measure-
ments from the images associated with cameras C, D and E and interpolate the
values. Notice that off-axis pixels in D and E will contribute to compressive-shear
in some cases, and expansive-shear in other instances resulting in different amounts
of motion blur. We have successfully used both approaches in different instances.
The required computations are easily tractable with standard microprocessor based
systems at several frames per second. More complex algorithms such as bundle ad-
justments are also possible, but may not be necessary for certain imaging platform
altitudes.

4 Accommodating Dynamic Variations in Operational Camera
Arrays Using Pose Information

The on-board global positioning system (GPS) sensor for estimating the aircraft
position in world coordinates and on-board inertial measurement unit (IMU) sen-
sors for measuring platform velocity, orientation and gravitational forces provide the
necessary information to relate each computed WFOV image to be geo-registered
in the context of a WGS84 world geodesic spatial coordinate system. The aircraft is
in steady motion, and the camera array is under visual-servo control trying to main-
tain sight of a fixed patch on the ground. The servo-control system, also known as a
gimbal-steering system, exhibits a finite delay. In addition, the GPS sensor can suf-
fer spurious noise from time to time and the IMU has both drift error and shot noise
associated with measurements. These dynamic variations and uncertainty in plat-
form and camera-array orientation result in frame-to-frame jitter. Image jitter can
be compensated locally (i.e., within a single-camera view) using image stabilization
techniques often employed in other video applications [26]. Globally compensat-
ing for image jitter which occurs across the camera-array image planes requires the
development of new techniques.
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A more challenging variation is dynamical changes to the platform orbital path
during different periods of time and lack of reliable camera-array position and ori-
entation information. That is, environmental constraints during specific imaging-
missions may necessitate non-circular (i.e., elliptical, zig-zag, criss-cross) flight-
path trajectories of the aircraft and/or loss of camera-array navigation information.
In such scenarios it may still be possible to analyze the acquired WAMI in a limited
fashion depending on the actual platform trajectory and metadata reliability. In cases
where navigation information is available and the flight path can be isomorphically
remapped to a circular trajectory that also maintains temporal ordering of the views,
then a new persistent WAMI sequence (nearly) equivalent to that from a circular or-
bit could be synthesized. In other situations where sufficiently accurate navigation
information is not available, then temporal ordering may be relaxed and only the
most consistent set of poses extracted. In such scenarios it is desirable to analyze
each computed WFOV image and reorder the video sequence based on the relative
pose associated with the observation of several structures of interest on the ground.
Preliminary work in this direction has been investigated using experimental image
sequences [16] that can be extended to very large format, wide-area WFOV imaging
systems. Principal component analysis (PCA) is one potential tool for reordering a
sequence of images by pose as described next.

Suppose each image xi of size M × N of a randomly captured sequence of im-
ages is formed into an MN × 1 vector. Suppose this is done for the entire set of
images and the resulting vectors are made the columns of a matrix X = [x1, . . . ,xK ]
of random object poses. Then, the range space of the matrix E with columns com-
posed of the L largest corresponding eigenvalues for some L is an L-dimensional
subspace of RMN . We will refer to this subspace as the eigen-subspace. The projec-
tion g(xi ), of size L × 1, of the image xi , onto the L-dimensional largest variance
eigen-subspace is given by the expression,

g(xi ) = xT
i E, (12)

which is used as the associated feature vector for pose reordering.
The approach for reordering the images based on this feature is an iterative pro-

cess. Let Sj and Sj be the set of unordered and ordered images at iteration j , re-
spectively. To begin, S0 is the entire set of unordered images and S0 is the empty set
of ordered images. At iteration j = 1, a randomly chosen image is labeled x1 and
moved from S0 to S0, yielding S1 and S1. For j ≥ 2 an image xj is moved from
Sj−1 to Sj−1 such that,

xj = argmin
x∈Sj−1

(∥∥g(xj−1) − g(x)
∥∥)

. (13)

Thus, the ordering algorithm picks from the unordered set, the image closest to the
last ordered image in the eigen-subspace. Once the images have been ordered using
the minimum separation, a confidence measure is computed using local curvature
along the trajectory (called the object manifold) of the ordered images in the eigen-



24 Wide-Area Persistent Airborne Video: Architecture and Challenges 367

Fig. 11 Curvature
explanation in a 3D
eigen-subspace

subspace. Let dsj be the vector, dsj = g(xj )− g(xj−1), then the cosine of the angle
between the vectors is the correlation coefficient,

cos(θj ) =
dsT

j dsj−1

‖dsj‖‖dsj−1‖
. (14)

The magnitude of the amount of change between two adjacent difference vectors or
three ordered image vectors, as illustrated in Fig. 11, can be computed as

κj = ‖dsj−1 − dsj‖, (15)

which is a second order derivative approximation for the local manifold curvature.
The confidence in ordering metric is given by

cj = exp
(
−κj

(
1 − cos(θj )

))
. (16)

The confidence metric cj attempts to use a combination of three local image projec-
tions to measure the alignment and the curvature. The alignment is equivalent to the
congruence coefficient across three images and is equal to one when they are in a
straight line. The curvature acts as a weight across the combination of the three im-
ages. A high confidence measure indicates the images are changing slowly and pose
ordering is more accurate in this region, and a low measure of confidence means that
the images are changing more erratically. A flow chart showing the PCA approach
for pose ordering is shown in Fig. 12.

5 Summary and Conclusions

Wide-area persistent airborne video is an emerging very large format video with
a specialized optical design for capturing large aperture images using an array of
cameras. A well configured geometric arrangement is important to enable efficient
image remapping, registration and mosaicking for producing accurate, extremely
large 16K × 16K images at several frames per second sampling rate. The airborne
camera array enables a denser sampling of the 4D light field in urban environments
at higher spatial and temporal resolution than previously possible using other optical
systems such as satellites or distributed single-camera airborne systems. Wide-area
motion imagery, once it becomes more widely available, will facilitate the devel-
opment of a new class of computational vision applications including dense 3D
reconstruction of urban environments, continuous monitoring of large geographical
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Fig. 12 Flow chart for multi-camera pose ordering algorithm

areas to analyze human activity and events, and surveys of large spatial regions to
provide situation awareness for both civilian and defense needs. The optical geome-
try of an airborne camera array and a broadly applicable wide aperture virtual focal
plane imaging model was developed to understand the image-sensor characteristics.
Practical challenges in developing and using wide area imagery were described as
a guide towards improving the utility of future systems. Some of the challenges in
the exploitation of wide-area airborne video include the need for improved cam-
era calibration, better estimation of platform dynamics, accurately modeling the
spatio-temporal variability of the reflectance function across the camera array, and
seamless image mosaicking. Given that the volume of data that can be captured
by even modest wide area sensors is on the order of several terabytes per hour, or
two orders of magnitude higher than standard definition video data rates, there is a
pressing need for scalable on-board processing and tools to manipulate such large
data sets for interactive visualization and analysis. A strategic research direction is
multi-core vision algorithms for close-to-the-sensor processing to provide realtime
geo-registration, compression, feature extraction, image matching, mosaicking, and
object detection. Developing higher level algorithms for automatic 3D reconstruc-
tion, object tracking, and activity analysis offers additional research directions over
the next decade. Exploring the parallelization of such algorithms across heteroge-
nous computing systems will be critical to enable the timely use of wide-area large
format video sensor data.
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