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Abstract— We introduce a novel discrete cosine transform-
based feature (DCTF) descriptor designed for both robustly
matching features in aerial video and tracking features across
wide-baseline oblique views in aerial wide area motion imagery
(WAMI). Our DCTF descriptor preserves local structure more
compactly in the frequency domain by utilizing the mathematical
properties of the discrete cosine transform (DCT) and outper-
forms widely used the spatial-domain feature extraction methods,
such as speeded up robust features (SURF) and scale-invariant
feature transform (SIFT). The DCTF descriptor can be used in
combination with other feature detectors, such as SURF and
features from accelerated segment test (FAST), for which we
provide experimental results. The performance of DCTF for
image matching and feature tracking is evaluated on two city-
scale aerial WAMI data sets (ABQ-215 and LA-351) and a
synthetic aerial drone video data set digital imaging and remote
sensing image generation (Rochester Institute of Technology
(RIT)-DIRSIG). DCTF is a compact 120-D descriptor that is less
than half the dimensionality of state-of-the-art deep learning-
based approaches, such as SuperPoint, LF-Net, and DeepCom-
pare, which requires no learning and is domain-independent.
Despite its small size, the DCTF descriptor surprisingly produces
the highest image matching accuracies (F; = 0.76 and ABQ-215),
the longest maximum and average feature track lengths, and the
lowest tracking error (0.3 pixel, LA-351) compared with both
handcrafted and deep learning features.

Index Terms—3-D stereo, aerial video, convolutional neural
network (CNN), DCT, feature descriptor, matching, point corre-
spondences, spatial frequency.

I. INTRODUCTION

OCAL keypoint feature detection, matching, and tracking

are essential ingredients in many computer vision
tasks. An image matching pipeline consists of three
stages—feature or keypoint detection, feature descriptor rep-
resentation, and descriptor matching. For feature tracking,
an additional association step is needed. Good local fea-
tures provide distinctive image representations that enable
keypoints to be distinguishable within their neighborhoods
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across new views [1]. In many detect-and-track feature match-
ing approaches, a reliable feature detector is used to accurately
and consistently extract feature points, which is then used to
establish correspondences or feature tracks between frames
in an image sequence. A feature descriptor is an encoder
that maps a feature point or region into a distinctive high-
dimensional vector by incorporating the local neighborhood
information. A robust feature descriptor is expected to be
invariant to a range of image transformations, including
translation, scale, illumination, perspective, blur, compression,
and noise. The feature descriptor matching module computes
distances between a reference and candidate set of feature
descriptors using suitable similarity or distance metrics to
establish the best match.

Good features for matching and tracking being the foun-
dation of many computer vision algorithms have led to a
proliferation of detectors [1], [2] and descriptors [3]. Scale-
invariant feature transform (SIFT) [4] has established itself
as one of the best-performing hand-crafted feature match-
ing algorithms. Speeded up robust features (SURF) [5] was
developed to improve upon SIFT and performs better in
terms of speed and accuracy. A few commonly used feature
extraction methods, such as Oriented features from accelerated
segment test (FAST) and Rotated BRIEF (ORB) [6] and
accelerated-KAZE (AKAZE) [7], use binary descriptors for
high computational efficiency with a tradeoff in matching
accuracy. Recently, new deep learning approaches for feature
analysis have been developed to improve image matching
pipelines [8]-[10]. However, deep learning approaches are
supervised requiring a computationally expensive learning
phase. Furthermore, labeled training data may be difficult to
obtain and are noisy in domains, such as city-scale aerial
video or self-driving vehicles under obscuration and weather.

In the aerial video, such as wide area motion imagery
(WAMI) [11], accurate feature matching and tracking are the
performance limiting steps for tasks, such as photogramme-
try, stereo, tracking, and target recognition. Due to oblique
viewing angles and perspective shape distortions, reaching
subpixel accuracy to support structure from motion (SfM)
and scene perception, for autonomous drone navigation [12],
is challenging, especially when there are highly repetitive
textures, such as roof tiles, siding, and windows in urban
scenes. Most traditional and deep feature analysis operators
operate in the spatial domain. We propose a novel discrete
cosine transform feature (DCTF) descriptor to generate a
frequency domain feature descriptor that is invariant to various
image transformations. DCTF requires no training step and is
significantly more compressed than recent deep learning-based
approaches. The DCTF descriptor works in conjunction with
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any detector and provides state-of-the-art feature matching and
tracking performance in aerial video.

II. DCTF

In this section, we provide the basic definitions of
the discrete cosine transform (DCT) as a background.
We then describe the methodology used to build the novel
DCTF descriptor for feature matching.

A. DCT

The DCT maps a signal from the spatial domain to the fre-
quency domain. The DCT captures visually important spatial
frequency information in a 2-D signal with only a small com-
pact set of low-frequency coefficients that cluster in the upper
left corner of the corresponding 2-D DCT matrix. Due to this
energy compaction property, the DCT is universally used in
data compression and image quality assessment applications.

The 2-D DCT of an M x N image matrix f is defined as

M—-1N-1

2i +1
Flu,0) = aa, §.ﬂunxcmﬁigﬁkf
i=0 j=0
2j+1
X COS M 1)
2N

where 0 <u < (M —1), 0<v < (N—1), f(i, J) is the pixel
intensity, and F(u,v) is the transform coefficient at row u
and column v in the DCT matrix. Scalars a, and «, are the
normalization coefficients defined as

1/vM, u=0 @)

Oy =

V2/M, 1<u<M-—1
1/V/N, v=0
J2/N, 1<v<N-—1.

The coefficient F (0, 0) at the top left corner in the DCT matrix
is the dc term (coefficient). The rest of the DCT coefficients are
ac terms that correspond to high spatial frequency coefficients
in increasing order. Using the natural properties of the DCT,
the proposed DCTF descriptor can achieve invariance to pho-
tometric transformations. According to (1), the dc term F (0, 0)
of the DCT matrix for a 2-D image f can be computed as

3)
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which can be interpreted as the sum of all pixel (graylevel)
intensities in image f. Illumination differences can be
normalized by dividing each ac term by the dc term (F (u, v)/
F(0,0)). Other photometric transformations, such as image
blur and JPEG compression artifact, can be handled by
using the low-frequency coefficients in a DCT matrix and
disregarding the high-frequency ones.

B. Feature Descriptor Representation and Matching

For each feature keypoint p, detected in the input image,
s square image patches of different sizes are center-cropped
around p,. Let My x My be the dimension of the smallest crop
patch. For each i € {0,1,2,...,s — 1}, we crop an image
patch p{” of size a’ My x a' My, where  is the scaling factor
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Fig. 1. (Left) Five center-cropped (nested) image patches around a keypoint
p; are shown as colored dashed boxes. (Middle) DCT coefficient matrix Cy
for the largest crop patch, p£4). The dc term is highlighted in yellow color,
and the rest are the selected ac terms. (Right) Zig-zag scan is applied, and the
first 24 ac terms are selected and normalized (Zy4 operator). Concatenating
from all five patches forms the DCTF feature descriptor representation, vy.

between patch sizes. The DCT of each center-cropped patch,
C = DCT(p,({l) ), is used to encode the most informative spatial
frequency information. Since most of the visually significant
information with photometric invariance is stored at the upper
left corner of C;, we use the zig-zag scan shown in Fig. 1 to
reorganize the DCT coefficients and keep the dc term and the
first n ac terms. We divide the n selected ac terms by the
dc term to normalize for illumination changes. We repeat
the process for each nested crop patch p,E’) and concatenate
the selected coefficients into a 1-D vector vy to form the
DCTF feature descriptor for keypoint p,. The concatenation
operation is defined as

s—1 s—1
vi = | JZ[C:1 = | Jz,[DCT(p{))] 5)

i=0 i=0
where the zig-zag operator Z,[C;] extracts the first (n + 1)
elements of C; in zig-zag scan order and then normalizes the
transform coefficients (dividing by Zy dc term) and keeping
n ac terms. Using patches of different sizes around a keypoint
allows us to encode the distinctive characteristics from various
immediate neighborhoods, which improves the robustness of
matching. In the experiments, we use five crops (s = 5)
starting at a patch size with M, = 16, scaling factor a = 1.5,
and the largest patch size of 81 x 81. The DCTF descriptor, vy,
is a 120-D vector using n = 24 coefficients and s = 5 crops.

Algorithm 1 Generate the DCTF Descriptor
Require: Grayscale image I, feature keypoint p,.
Ensure: DCTF descriptor vy.
Initialize vy and scaling factor a.
for i <~ 01t (s—1) do _
Crop a a' My x a' M, patch p,((’) from I centered at p;.
Compute DCT coefficient matrix C; for p,(f).
/I Zig-zag scan C;
Zn[C;] < Normalize the first n ac terms.
v, < v @ Z,[C;]. // Concatenation
end for

Taking advantage of the mathematical properties of the
DCT leads to a local frequency domain feature descriptor
with invariance to photometric transformations in the image.
The proposed DCTF descriptor requires no training process
and imposes no constraints on the type or size of input
data, making it more compatible than its deep learning-based
counterparts. To establish correspondences between feature
keypoints in the reference image and those in the matching
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Fig. 2. Feature matching pipeline. DCTF descriptor is generated for each
keypoint in both reference and matching images. Each reference descriptor is
matched against all the matching candidate descriptors, and the best match
is determined using the DR matching scheme. Keypoint correspondences
between two images are shown as color-coded solid lines.

image, we use the distance ratio (DR) matching strategy [4].
For each descriptor in the reference image, we determine
its nearest neighbor (NN) descriptor n1 from all candidate
keypoints in the matching image based on L, feature distance.
The nearest d,; and second NN d,, distances are used to
check the ratio, p = d,;/dy,. The NN nl is considered as
the best match for the reference descriptor if the ratio p is
below a threshold (p < 0.7 in this letter). The feature matching
pipeline is illustrated in Fig. 2.

II1. EXPERIMENTAL RESULTS

We evaluate the proposed DCTF feature descriptor on two
city-scale aerial WAMI data sets from TransparentSky and
one synthetic aerial drone video sequence from Rochester
Institute of Technology (RIT) [13]. The DCTF descrip-
tor used in combination with SURF [5] feature detector
is denoted as SURF+DCTF and with the FAST feature
detector [14] as FAST+DCTF. Note that DCTF is only
a feature descriptor and requires a separate feature detec-
tor. We compare DCTF to four traditional approaches—
SURF, SIFT, AKAZE, and ORB—and three deep learning
approaches—DeepCompare, LF-Net, and SuperPoint. All of
the traditional feature extraction methods, including DCTF,
were implemented in C++ using OpenCV 2.4 libraries. The
pretrained models for the deep learning methods are provided
by Zagoruyko and Komodakis [8], DeTone et al. [9], and
Ono et al. [10].

A. Image Matching Accuracy in Aerial WAMI (ABQ-215)

We evaluate the feature matching performance of the pro-
posed method on the first ten frames from the Albuquerque
(ABQ-215) WAMI sequences [11], [15]. The high-resolution
aerial images (6600 x 4400 pixels) were captured using an
airborne platform with a gimbal-mounted camera system that
tracked the center of the scene. The first and tenth frames
are shown in Fig. 3, with a viewing angle difference of
about 1.67° between each adjacent pair of images. The full
flight trajectory (215 frames) covers a complete orbit with
a radius of 2.5 km. The typical range between the camera
location and the scene center was 3 km. The height above

Frame #09

Frame #00

Fig. 3. Two sample frames from the ABQ-215 WAMI data set. Image size
is 6600 x 4400.

ground level (AGL) was 1.5 km, and the average ground
sampling distance (GSD) was 20 cm. The bundle adjusted
metadata (camera poses) for the image sequence is used as the
ground-truth fundamental matrix for evaluating the accuracy
of feature correspondence tracking [16], [17].

We first perform feature keypoint detection on the reference
image that is the first frame in the sequence (frame #00
in Fig. 3) and then generate feature descriptor for each
keypoint. The same procedure is applied to the following
nine consecutive frames with increasing amount of perspective
transformations. After that, we adopt the DR matching strategy
to match keypoints in the reference image against those in
each matching image. Correct matches are identified using the
ground truth. The matching results are evaluated in terms of
the F-measure (F})

precision x recall

Fil=2x —— 6
: x precision + recall ©

where recall and precision are defined as follows:

#correct matches
recall = ——— @)
#correspondences

#correct matches

()

precision = #correct matches + #false matches’

The evaluation results are presented in Table I. The upper
half of Table I demonstrates the performance of DCTF using
different numbers of DCT coefficients n from each image crop
around a keypoint for generating a descriptor (discussed in
Section II-B). We use a fixed number of five crops (s = 5)
and evaluate three different DCT coefficients n = {12, 24, 36}
for DCTF descriptors of three sizes (5 x 12 = 60, 5 x
24 = 120, and 5 x 36 = 180). Combined with either SURF
keypoints or FAST keypoints, the 120-D DCTF descriptor
provided the best results compared with 60-D and 180-D.
It is important to determine the optimal size of the DCTF
descriptor, especially for large-scale aerial imagery, because
incorporating too few DCT coefficients will make the descrip-
tor less discriminative, while incorporating too many will
introduce redundant high-frequency information. We use the
120-D DCTF descriptor as the default in this letter.

Overall, the DCTF descriptor exhibits higher matching
accuracy than the other approaches, including state-of-the-art
deep learning feature methods. SURF+DCTF outperforms the
rest by a large margin. FAST+DCTF produces the second-
best matching performance. Note that LF-Net and Super-
Point could not handle the large size of aerial imagery, and
both methods did not provide any results on the ABQ-215
WAMI data set. Surprisingly, the widely used ORB feature
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TABLE I

FEATURE MATCHING EVALUATION USING F| FOR THE AERIAL ABQ-215
WAMI DATA SET USING 2000 FEATURES PER FRAME BASED ON
DR MATCHING (RATIO 0.7). T1-T9 CORRESPOND TO OBLIQUE
MULTIVIEW FRAMES #01 TO #09, WITH MATCHING TO
REFERENCE FRAME #00, BASED ON BUNDLE ADJUSTED
CAMERA POSE AS THE GROUND TRUTH. BEST RESULTS
ARE HIGHLIGHTED IN BOLD AND SECOND BEST IN
ITALICS. LF-NET AND SUPERPOINT
FAILED ON THIS DATA SET

Method Tl ™ T3 T4 T5 T6 T7 T8 T9

SU%XgTF 076 075 0.62 052 038 028 020 013 0.09
SU(RE‘O'%C)TF 076 075 0.63 055 042 029 021 0.11 0.10
S?ﬁgﬁﬂ:a% 075 062 053 038 025 0.17 008 006
FAfggiyfTF 063 057 050 038 025 0.6 009 005 0.03
oD, | 063 059 051 041 028 0.16 0.09 0.03 002
o) | 063 058 050 039 023 0.2 006 0.03 001
SURF 062 058 048 037 027 021 015 072 008
SIFT 052 048 040 034 027 017 0.15 009 007
AKAZE 047 040 029 022 014 009 0.06 003 003
ORB 010 007 005 003 001 00l 00l 001 001
DeepCompare 0.59 0.54 045 034 025 0.17 0.11 0.07 0.05

<5

vt »
Frame #0000 Frame #0180

Fig. 4. Sample frames from the LA-351 WAMI data set. The aerial video
consists of 351 images, each 1650 x 1100 pixels.

for real-time simultaneous localization and mapping (SLAM)
applications does not perform well on aerial imagery. The
FAST detector performs well for small viewpoint changes, but
performance quickly degrades as the perspective distortions
increased (beyond T4).

B. Feature Tracking Accuracy in Aerial WAMI (LA-351)

To evaluate the performance of the DCTF descriptor in the
context of feature tracking on long aerial video data set, we use
the Los Angeles (LA-351) WAMI sequence [11] that consists
of 351 high-resolution images (see Fig. 4). Data acquisition
was similar to ABQ-215 WAMI with a flight trajectory orbit
radius of 4.3 km and a height AGL of 4.5 km. Note that
the image size was subsampled to 1650 x 1100 pixels so that
LF-Net and SuperPoint can work on this sequence even though
DCTF does not have such a resolution limitation.

Accurate and robust feature tracking is critical for computer
vision tasks, such as bundle adjustment (BA) and SfM [18].
Having longer feature tracks along a sequence can significantly
contribute to the robustness of an SfM or BA algorithm [16].
This is because a longer group of feature matches can tie
more views together and provide more constraints in the least-
squares optimization methods. Feature tracks can be generated
by extracting features (keypoint detection and description)
in each frame, applying pairwise keypoint matching between
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TABLE II

EVALUATION OF FEATURE TRACKING ON THE LA-351 DATA SET USING
5000 FEATURES PER FRAME. EEE USING THE BUNDLE ADJUSTED
CAMERA POSE AS GROUND TRUTH (10) Is CALCULATED
IN PIXELS. MATCHING STRATEGY USED IS DR OR NN
OR THRESHOLD. BEST RESULTS ARE HIGHLIGHTED
IN BOLD AND SECOND BEST IN ITALICS

Method Matching  # of  Avg Track Max Track EEE EEE
Strategy ~ Tracks Length Length  Mean Std
SURF+DCTF DR (0.7) 161,448 9.13 350 030 1.53
FAST+DCTF DR (0.7) 190,697 7.45 225 039 279
SURF DR (0.7) 235,425 5.96 148 045 6.67
SIFT DR (0.8) 242,696 6.32 164 0.76 10.82
AKAZE DR (0.8) 160,670 8.88 349 0.70 10.35
ORB NN 239,395 6.56 160 16.21 52.55
DeepCompare Threshold 129,774 2.59 33 0.75 11.58
LF-Net NN 195,776 8.02 316 352 2571
SuperPoint NN 187,228 7.45 308 0.38 0.63

adjacent frames, and associating the matched keypoints across
the sequence. Each track 7; is defined as the set of cam-
eras or views

e ={hj hj+1,h; 42, hj+y;—1) ©9)

where y; is the number of consecutively matched features
along with the track sequence starting from view (camera) £
and terminating at view 4y ;—1. We compute the Euclidean
epipolar error (EEE) using the bundle adjusted cameras as the
ground-truth transformations to evaluate the accuracy of fea-
ture tracks [16]. To obtain the best results from each method,
we use their respective default matching strategies [4]-[10].
The EEE of a feature track, 7, is defined as

hj+y;—1
Z dPit1,j > Fairnpij)

i=h;

PG

where {p; ;, pi+1,;} defines a pair of matched features between
two adjacent cameras i and i + 1 in track 7;, Fg;qp) is
the ground-truth fundamental matrix that maps 2-D image
points from view i to view i + 1, and d(-,-) computes the
perpendicular distance between the matched point and the
epipolar line. Table II shows the mean and standard deviation
of EEE over all feature tracks for each method, as well as
total number of tracks, average track length, and maximum
track length. DCTF using SURF detected feature keypoints
generated the longest feature tracks, the smallest average EEE
track error, and the second smallest track error variance. DCTF
using FAST keypoints also outperformed all of the traditional
and deep learning methods tested, except SuperPoint that
showed the smallest track localization pixel error variance.

(10)

C. Feature Tracking Accuracy in RIT DIRSIG Data Set

RIT digital imaging and remote sensing image generation
(DIRSIG)-simulated drone video data set [13] consists of
synthetic aerial imagery and camera metadata (see Fig. 5). The
simulated flight trajectory is a full orbit around the scene, and
the nominal declination angle was 40°. The synthetic data set
consists of 420 RGB synthetic aerial images. The image size is
1200 x 800 with 32-um square pixel size and a focal length of
125 mm [13]. Similar to the LA-351 WAMI data set, we tested
feature tracking on the RIT DIRSIG data set and used
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Frame #0000

Fig. 5. Sample frames from the RIT DIRSIG simulated drone data set. The
aerial video consists of 420 RGB synthetic images, each 1200 x 800 pixels.

TABLE III

EVALUATION OF FEATURE TRACKING ON THE RIT DIRSIG DATA SET
USING 3000 FEATURES PER FRAME. SPEED OF EACH METHOD IS
SHOWN IN TERMS OF TIME TO PROCESS ONE FRAME ON AN INTEL
COREi7-7700HQ CPU. BEST RESULTS ARE HIGHLIGHTED
IN BOLD AND SECOND BEST IN ITALICS

Method Descriptor Matching Max Track EEE EEE Time per

Size Strategy ~ Length Mean Std Frame (s)
SURF+DCTF 120 (floats) DR (0.7) 420 023 099  0.96
FAST+DCTF 120 (floats) DR (0.7) 260 0.41 0.81 0.77
SURF 64 (floats) DR (0.7) 257 0.62 6.62 0.50
SIFT 128 (floats) DR (0.8) 298 1.52 12.49  0.99
AKAZE 61 (bytes) DR (0.8) 387 043 5.60  0.16
ORB 32 (bytes) NN 206 8.96 2730 0.20
DeepCompare 256 (floats) Threshold 47 9.68 37.72 538
LF-Net 256 (floats) NN 246 0.75 5.07 0.51
SuperPoint 256 (floats) NN 412 048 1.43 1.12

EEE errors for evaluation. Table III includes feature descriptor
size for each method, EEE mean and standard deviation, and
time to process each frame. DCTF combined with SURF key-
points provides the best feature tracking results with the lowest
EEE mean and standard deviation and the longest feature track
whose length is the full orbit of the data set. SURF+DCTF
has significantly less pixel error that is more than two times
better than SuperPoint, which is a state-of-the-art deep learning
method. FAST+DCTF produces the second-best performance
in terms of accuracy. The DCTF descriptor size is more than
two times smaller compared with deep learning approaches,
making it suitable for many embedded applications that have
limited memory or limited network bandwidth. AKAZE and
ORB use a binary descriptor that is the smallest and fastest to
compute but is much less accurate than DCTF. The speed of
DCTF is comparable to SuperPoint and SIFT.

IV. CONCLUSION

DCTF is a novel frequency-domain descriptor using local
nested image patches for accurately matching features. The
120-D DCTF with 81 x 81 patch size worked best for
large-scale aerial imagery with roughly constant or slowly
changing altitudes. The DCTF descriptor size is not only
significantly smaller than recent deep learning algorithms but
surprisingly outperforms them, including the SuperPoint deep
neural network architecture, which was designed specifically
to optimize subpixel matching accuracy. DCTF also out-
performed the ORB feature tracker that is widely used for
SLAM applications. DCTF was the best performing method
for image matching on the aerial ABQ-215 WAMI data set.
The DCTF descriptor provided consistent performance using
SURF detectors. Similar to the other methods, DCTF also

exhibited a sharp falloff in performance as image perspective
distortions increased, especially using FAST features. For fea-
ture tracking, DCTF had the lowest error, longest maximum,
and average track lengths on both the RIT simulated drone
and LA-351 WAMI aerial data sets. Future work is focused
on extending the DCTF descriptor to be invariant to rotation
and scale.
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