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Abstract—Ubiquitous low cost multi-rotor and fixed wing
drones or unmanned aerial vehicles (UAVs) have accelerated
the need for reliable, robust, and scalable Structure-from-
Motion (SfM) and Multi-View Stereo (MVS) pipelines suitable
for a variety of flightpath trajectories especially in degraded
environments. Feature tracking being a core part of SfM
and MVS, is essential for multiview scene modeling and
perception, but difficult to evaluate in large scale datasets due
to the lack of sufficient ground-truth. For large-scale aerial
imagery, accurate camera orientation and dense 3D point
cloud accuracy can be used to assess the impact of accurate
feature localization and track length. We propose a novel
view simulation (or synthesis) framework which generates
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visually realistic new unseen camera views for feature detection using known high fidelity camera poses for modeling.
Seven state-of-the-art local handcrafted and learning-based features are quantitatively evaluated for robustness and
matchability within the SfM and MVS pipelines using the open source COLMAP software. Our experimental results provide
performance rankings of each feature, using twelve different evaluation metrics across three synthetic city-wide aerial
image sequences. We show that recent learned features, SuperPoint and LF-Net, have not only reached the quality of
the best handcrafted features like SIFT and SURF, but now outperform them in terms of more accurate 3D camera pose
estimates and longer feature tracks. SuperPoint produces 1.51 meter average position error and 0.03° average angular
error, while SIFT remains competitive (second best for pose and overall) with 1.78 meter and 0.11° errors respectively.

Index Terms—Local feature detector, SIFT, SURF, ORB, AKAZE binary feature, MSER, LF-Net, SuperPoint, image

matching, photogrammetry, camera pose, bundle adjustment,

simulation environments, virtual reality, augmented reality.

I. INTRODUCTION
XTRACTING features and establishing tracks of fea-
ture correspondences along a video sequence are
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critical steps in Structure-from-Motion (SfM) and Multi-View
Stereo (MVS) pipelines [1]. Many feature extraction methods
are exclusively designed for a particular computer vision
task [2], so their performance can be substantially influenced
by different types of input data. As a result, it is impor-
tant to find feature extraction approaches that provide robust
results across different scenarios. SfM is widely used in many
applications including 3D reconstruction, autonomous driving,
robotics, augmented reality, 3D scanning, efc. Inputs to a StM
system are raw images and the final outputs are a sparse
3D point cloud and estimated camera 3D poses. The first
main process performed on the input images is to apply local
feature detectors to identify potentially distinguishable image
points. Once the feature points are detected on each image,
a feature descriptor is used to assign a unique identity to
each feature. The feature descriptors from different views are
compared against each other so that feature correspondences or
matches are established. Such comparison takes place between
multiple views and those features that are matched together
create a group which is known as feature track. From the
geometry point of view, feature points within a track represent
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the images (projections) of an ideally unique 3D point from
the scene. At this stage, most SfM approaches use the 2D point
correspondences to estimate initial poses corresponding to
each image view. There are multiple approaches that are used
in the literature to estimate camera poses. Nister’s 5-point [3]
and Longuet-Higgins’ 8-point [4] are the two most common
algorithms for this purpose that estimate the essential and
fundamental matrices, respectively. Once the feature tracks are
built, and assuming that the camera poses are available, the
feature points within each track are triangulated (cast) into
3D as rays. Ideally, these rays must converge into a single 3D
point. However, in real scenarios this is not the case due to
existence of error in both feature localization and inaccuracy
of camera poses. There are both linear and non-linear methods
for triangulation so that an optimal 3D point is estimated for
the observations (feature points) within a track.

The triangulated tracks constitute a sparse 3D point cloud.
At this stage of the MVS pipeline, both the camera poses and
sparse 3D points are initialized. In real scenarios, however,
these initial values are always prohibitively noisy and too
inaccurate to be used in a downstream processes such as
dense 3D reconstruction. Therefore one has to refine them by
applying an optimization technique. Bundle Adjustment (BA)
is a well known approach in computer vision literature which
takes the initial values of the camera poses along with the
sparse 3D points obtained from the triangulation stage and
iteratively performs a non-linear least squares minimization to
produce a refined solution that satisfies the reprojection error
cost function [5], [8]. At this point, the geometry of cameras
are known and a set of sparse 3D points representing the
underlying scene are available. Henceforth, this information
can be potentially exploited by many downstream applications
such as dense 3D reconstruction [6], moving object track-
ing [9], image registration [10], [11], video analytics [12],
etc. As also stressed in [13], the outputs of such downstream
applications are only as good as the quality of the refined
camera poses and the input images. The quality of input
images mostly depends on the hardware technology. Recently,
we have been witnessing rapid advances in the availability of
high-resolution aerial imagery due to improvements in data
acquisition hardware and the abundant availability of low-
cost unmanned aerial vehicles (UAVs). This has increased the
demands for reliable, robust and scalable SfM methods which
can thoroughly exploit the available information in the high-
resolution imagery.

Therefore it is crucial to evaluate the performance of
different local features in the context of SfM and MVS,
particularly on city-scale wide area motion imagery (WAMI)
datasets [14], [15]. Performing a reliable evaluation of the esti-
mated camera poses within a SfM pipeline has been impeded
by a lack of accurate ground-truth on city-scale WAMI
datasets. Instead, most of existing approaches have focused
their evaluation either on the components of a SfM pipeline
which do not require ground-truth such as reprojection error
and population of sparse and dense 3D points, or on some
toy-scale and non-realistic datasets [16]. To resolve this prob-
lem, we propose a visually realistic synthetic WAMI dataset
generation framework that provides high fidelity ground-truth

for the camera geometry. The developed large-scale synthetic
datasets enable us to systematically study the effects of local
features on the precision of the recovered camera 3D poses in
addition to the common indirect error metrics. We evaluate a
group of popular handcrafted features (both floating-point and
binary) and recently developed deep learning-based features
in a SfM and MVS pipeline, i.e. COLMAP [5]-[7], on our
proposed MU synthetic WAMI dataset and the public Digital
Imaging and Remote Sensing Image Generation (DIRSIG)
dataset [17] from Rochester Institute of Technology (RIT). The
proposed pipeline for local feature evaluation is illustrated in
Figure 1. Our experimental results indicate interesting obser-
vations on the reliability and suitability of various handcrafted
and learned features for different purposes. We provide
individual ranking of features for different categories of error
metrics including reprojection error, number of sparse 3D
points, number of inliers, and camera pose (position, rotation)
errors.

Il. RELATED WORK

The requirement for robust local features has led to many
quantitative evaluation works on feature extraction methods.
Moreels and Perona [18] evaluated various combinations of
feature detectors and descriptors. Hessian-affine detector com-
bined with SIFT descriptor performs the best under perspec-
tive distortions and illumination variances. Mikolajczyk and
Schmid [19] evaluated a group of feature descriptors on the
Oxford Affine Covariant Regions Dataset (ACRD) [20] which
presents photometric and geometric transformations in 8 image
sets. The performance of descriptors varies using different
feature detectors and the most widely-used SIFT descriptor
outperforms the other methods. Heinly ef al. [21] compared
three binary feature descriptors, BRIEF [22], BRISK [23], and
ORB [24] with floating-point descriptors SIFT and SURF on
an extended Oxford Dataset. The experiments indicated that
binary descriptors achieve significant speed improvement but
their performances vary according to image transformation
types. SIFT descriptor yields the best results particularly for
geometric transformations. Fan et al. [16] provided com-
parative analysis of handcrafted features and learning based
features for image-based 3D reconstruction application on the
DTU MVS dataset [25] that contains different scenes includ-
ing various small objects and surface materials, and a large
scale Structure-from-Motion dataset [26] that contains many
unordered Internet images of several landmarks collected by
ground cameras. Their evaluation results indicate that binary
features produce acceptable 3D reconstruction results on the
datasets with no distracting images. However, traditional
floating-point handcrafted features like SIFT still provide bet-
ter results than their binary counterparts for large scale datasets
with distracting images. The learned descriptors in recent years
outperform the handcrafted methods but the pioneering deep
learning-based descriptor DeepDesc [27] provides less com-
petitive performance. Schonberger et al. [7] presented exten-
sive experimental evaluation of both handcrafted and learned
local feature descriptors for applications of SfM and MVS on
a group of small and large scale benchmark datasets. Their
evaluation verified that the learned descriptors outperform
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Fig. 1.

Our feature evaluation pipeline consists of four components: (i) Dense 3D point cloud generation using AgiSoft commercial software with

our own 3D voxel rendering method for synthetic aerial imagery generation, (ii) feature extraction using different methods, (iii) feature association
and image-based 3D reconstruction (SfM and MVS) using COLMAP [5], [6], and (iv) quantitative evaluation. We use Matlab scripts provided by
COLMAP to interface between feature extraction and 3D reconstruction, and Python scripts for evaluation [7].

SIFT in general, but advanced handcrafted descriptors [28],
[29] yield comparable or superior results compared to the
state-of-the-art learned features particularly in complex SfM
scenarios. To address the lack of reliable training data for deep
learning-based methods, Mueller ef al. [30] proposed an image
rendering and translation framework to generate high-quality
synthetic street-view images for both 2D and 3D computer
vision tasks. Nilosek er al. [17] developed a synthetic aerial
image dataset of a suburban scene for the purpose of evaluating
a variety of 3D reconstruction approaches in this scenario,
but the synthetic data was generated from a hand-made 3D
model which is not visually realistic. Ozdemir et al. [31]
introduced 3DOMCity, a scale model photogrammetric con-
test benchmark for evaluating image-based tasks such as 3D
reconstruction and point cloud classification. The dataset is
derived from a physically constructed 3D scale model of a
city simulating an urban scene at fine detail using calibrated
and precisely positioned cameras. Stathopoulou et al. [32]
evaluated three 3D reconstruction pipelines (COLMAP, Open-
MVG, and AliceVision) and their combinations on different
large scale datasets. Their experiments showed that SIFT
outperforms AKAZE for feature extraction in these pipelines,
and incremental bundle adjustment and patch-based MVS
produce more accurate results.

Ill. FEATURE DETECTION AND DESCRIPTION
In this section, we introduce the feature detectors and
descriptors that are evaluated in this article. Both handcrafted
and deep learning-based approaches are included.

A. Feature Detectors
A feature detector extracts features with distinctive patterns
from its local neighborhood in the image [33]. A reliable fea-
ture point detector is expected to consistently and accurately
detect keypoints over long image sequences. Feature points
detected on a sample image patch cropped from ABQ-215
synthetic aerial image by the feature detectors discussed below

are shown in Figure 2.
e SIFT: Scale-Invariant Feature Transform (SIFT) [34] uses
Difference of Gaussians DoG) for keypoints detection.
Keypoints are extracted from local maxima/minima in the

DoG at different scales. An orientation is then assigned
to each keypoint using orientation histogram from a local
region around the keypoint.

o SURF': Speeded Up Robust Features (SURF) [35] feature
detector is developed based on SIFT but achieves higher
computation efficiency. SURF approximates Laplacian of
Gaussian using a box filter. SURF extracts keypoints from
the determinant of the Hessian matrix.

o AKAZE: Accelerated KAZE [36] also uses the determi-
nant of the Hessian matrix to detect keypoints. It uses
nonlinear scale space based on the Fast Explicit Dif-
fusion (FED) operator. Rotation invariance is achieved
using Scharr filters.

e ORB: Oriented FAST and Rotated BRIEF (ORB) [24]
utilizes the FAST corner detector [40] to extract keypoints
from a scale pyramid. The intensity centroid of the local
neighborhood around a keypoint estimates orientation.

o MSER: MSER [37] is a grayscale blob detector. It extracts
maximally stable extremal regions (MSER) that are stable
connected components. Pixels inside an extremal region
should have approximately the same intensity through a
broad range of thresholds. Deep learning feature descrip-
tor DeepCompare uses MSER keypoints.

o LF-Net: Local Feature Network (LF-Net) [38] uses a fully
convolutional network to detect feature keypoints. The
scale-invariant feature points are detected from a final
feature score map by performing softmax operation on
N resized feature maps. The feature map for each scale
is produced by a simple ResNet [41] architecture.

o SuperPoint: SuperPoint [39] uses a VGG-style [42]
encoder to convert an input image to reduced dimension-
ality tensors. The tensor is upsampled by an interest point
decoder to original size as a feature map. Pixel values in
the map represent the likelihood of keypoint detections.

B. Feature Descriptors

To create a feature descriptor, a local region around a feature
point is extracted and converted into a 1D array. A robust
descriptor is expected to be invariant to a wide range of
image transformations, such as translation, rotation, scale,
illumination variance, image blur, perspective changes, efc.
The studied feature descriptors are summarized in Table II.
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Fig. 2. Feature point detection results for a sample image patch (300 x 200 pixels) cropped from ABQ-215 first frame (1650 x 1100) of synthetic
aerial image sequence and the corresponding region of interest subsampled and cropped from the real aerial image with the same camera pose.
Red hollow circles (synthetic) and green filled circles (real image) show the detected feature points at the same resolution with detectors applied to
the patch and 150 keypoints detected using each method; red circles filled green are matches with a tolerance of 1 pixel in keypoint position. Dice
score for just the patch is shown in parenthesis.

TABLE |
SUMMARY OF THE EVALUATED FEATURE DETECTORS. PARAMETERS OF EACH FEATURE DETECTOR FOR ABQ-215 DATASET INCLUDED
Feature Scale Rotation  Subpixel
Detector Feature Type Invariant Invariant Accuracy Learned Parameters
SIFT [34] Blob v v v X cv::xfeatures2d::SIFT::create(int nfeatures = 5000)
SURF [35] Blob v v v X cv::xfeatures2d::SURF::create(double hessianThreshold = 1290.00)
AKAZE [36] Blob v v v X cv::AKAZE::create(float threshold = 0.0015)
ORB [24] Corner X v X X cv::ORB::create(int nfeatures = 5000)
MSER [37] Region v v v X cv::MSER::create(int _min_area = 60, int _max_area = 14400)
LF-Net [38] Corner & Blob v v v v --top_k (number of keypoints) = 5000
SuperPoint [39] Corner v v v v --conf thresh (detector confidence threshold) = 0.125
TABLE I e DeepCompare: DeepCompare [43] employs a Siamese
SUMMARY OF THE EVALUATED FEATURE DESCRIPTORS network to learn a similarity function for patches around
Feature . . Data Training keypoints extracted by MSER detector.
. Dimension Learned | X R
Descriptor Type Set e LF-Net: Descriptor extraction is performed by a
SIFT [34] 128 float X - d ipt t k . d i tch
SURF [35] 64 float X ] escriptor networ . given a croppe 1.rnage patc
AKAZE [36] 61 byte X - around each keypoint. The network consists of three
ORB [24] 32 byte X - convolutional filters followed by fully-connected
DeepCompare [43] 256 float v Yosemite [44] 1
LF-Net [38] 256 float v Outdoors [45], [46] ayers. _ ]
SuperPoint [39] 256 float v/ MS-COCO [47] o SuperPoint: A descriptor encoder is used to upsample

the intermediate tensor to the full size. A UCN-like [48]
is utilized to generate a descriptor for every 8 pixels.
Then bicubic interpolation is performed to create the
complete set of descriptors.

e SIFT: The local neighborhood around a keypoint is
divided into 16 sub-regions. An 8-bin histogram of each
sub-region is computed using the orientation and gradient
magnitude. Concatenating the histograms from all sub-
regions creates the descriptor.

e SURF: 4 x 4 sub-regions are cropped from the local
area around a keypoint. Wavelet responses are computed We use a pinhole camera model in which the homogeneous
within each sub-region to form the descriptor. 2D pointx = [x y 1]T represents the image of a homogeneous

o AKAZE: AKAZE is a binary descriptor. It proposes a 3D point X =[X Y Z 1]T on the 2D camera focal plane with
Modified-Local Difference Binary (M-LDB) to perform the projection from 3D to 2D defined as:
binary tests using intensity and gradient of local region
around a keypoint. The binary test results form the x = K[R|t] X (D
descriptor.

o ORB: ORB is also a binary descriptor. The binary tests are ~ where R3x3 and t3x; are the rotation matrix and translation
operated on the sampling pairs that have low correlation vector from the world coordinate system to local camera coor-
and high variance. dinates, respectively, and K343 defines the camera calibration

IV. SYNTHETIC DATASET GENERATION
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Fig. 3. Fastscreen space area calculation for voxels. The convex hull for
the gray-shaded 3D voxel cube is determined using a lookup table based
on the hull code calculated from voxel extrema and camera position. The
projected image space convex voxel hulls and associated hull codes are
shown for three sample camera views.
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where f is the camera focal length in pixels, (u,v) is the
principal point and the lens distortion is treated as being
negligible or corrected in a separate step. The position of the
i"" camera, C; in 3D is given by:

C = —RIT t; 3)

We propose a 3D voxel renderer to generate synthetic aerial
image sequences. The synthetic aerial imagery generation
process utilizes a dense 3D point cloud of an urban area
provided by 3D reconstruction tools like Pix4D [49] and
AgiSoft [50]. Each point is rendered as a voxel represented by
a cube with position and extents. Our voxel software renderer
is designed to produce repeatable results independent of the
precision of the graphics hardware and to be efficient for views
where the rendered voxels will be approximately the size of a
single pixel.

Algorithm 1 GETHULLCODE: Generates Hull Code Using
Camera Position Compared to Voxel Minimum and Maximum
Ranges
Input: C,voxel /* camera position Eg. 3,
extrema x/
Output : hullcode
1: hullcode < (Cyx < voxelyin,)
+ (Cx > voxelmay,) < 1
+ (Cy < voxelpin,) K2
+ (Cy > voxelmw;y) <3
+ (C; < voxelyin,) < 4
+ (C; > voxelyay,) K5
2: return (hullcode)

voxel

The projected image or screen space area of each voxel
is determined efficiently using the method by Schmalstieg
and Tobler [51]. A hull code is constructed by setting bits to

8

(b)

Fig. 4. Two synthetic views for ABQ point cloud rendered using the
recursive voxel renderer described in Section IV. Both the orthographic
(a) and low altitude (b) synthesized views are dissimilar from any camera
poses used during 3D reconstruction.

indicate the camera’s position with respect to minimum and
maximum extents of the voxel with two bits for each x, y, and
z direction as shown by GETHULLCODE in Algorithm 1. This
hull code maps into a lookup table of pre-computed vertex
indices for the convex hull of a cube. Figure 3 shows three
examples of camera positions, hull codes, and the resulting
convex hulls. Each voxel vertex in the convex hull is projected
to the image plane and the area in pixels A is calculated using,

1 n—1 .
A= 5 in(yiﬂ —Yi-1), Wwith i mod n @)
i=1

where x and y are the hull coordinates projected to the image
plane using Eq. (1) and n is the number of vertices in the
hull. While a projected voxel is larger than a single pixel, the
voxel is subdivided and the renderer recurses. Only when a
sub-voxel is at least as small as a single pixel is the fragment
tested against the depth buffer and drawn to the color buffer
if the depth test passes. Pseudocode for the voxel renderer
is given in Algorithm 2. GETSUBVOXEL performs the voxel
subdivision returning a new voxel that is an octant of the
original. WRITEPIXEL projects the voxel center to the image
plane, performs a depth test, and updates pixel depth and color.
Figure 4 shows two synthesized views generated using our
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renderer that are dissimilar from any of the camera poses used
for 3D reconstruction.

Algorithm 2 RENDERVOXEL: Recursive Voxel-Based Subdi-
vision Rendering

Input : camera, buffer, voxel
Output : buffer /% Updated depth and color
pixel values x/
1: area < IMAGESPACEAREA (camera,voxel) /* Eg. 4
*/
- if area < 1.0 then
WRITEPIXEL (camera, buffer, voxel)
else
for i < 1 to 8 do
subvoxel < GETSUBVOXEL (voxel, i)
RENDERVOXEL (camera, buffer, subvoxel)
end for
. end if
: return (buffer)

R A A

—_
=]

V. FEATURE TRACKING, SFM, AND MVS
In this section, we discuss the methodology for establish-
ing feature tracks or associations, triangulation, and bundle

adjustment used in Structure-from-Motion (SfM) and Multi-
View Stereo (MVS) pipelines like COLMAP.

A. Feature Tracking

Algorithm 3 DISTANCERATIOMATCHING: Matching Strategy to
Establish Feature Tracks Using L, Distances in Feature Space

Input : Reference image feature descriptor for r feature
point v, € R; candidate feature descriptors in matching
image {v), € M |i=1,2, ..., N}; ratio threshold r = 0.8
as in [1], [7]

Output : Best match feature index i for v, in M

1: vy < Find nearest neighbor, ny, of v, in M

. vy2 < Find second nearest neighbor, n, of v, in M

. dy, < DISTANCE (vp/, vy)

. dy, < DISTANCE (vp?, vy)

. if dp,/d,, > v then

/% No suitable matching feature found

for o,x/

n; < NULL

8: end if

: return (n;)

>

NeJ

The performance of bundle adjustment (BA) and Structure-
from-Motion (SfM) is greatly influenced by feature tracking
accuracy over a long image sequence, since feature tracks may
contain outliers due to feature association mismatches. The
first step of feature tracking is to extract keypoints by applying
a feature detector on a pair of images, i.e. reference image and
matching image. A feature descriptor is then computed for
each keypoint by mapping the local neighborhood structure
around the keypoint in the image to a 1D array. After that,

the feature matching module (see Algorithm 3), calculates
the Ly Euclidean feature distance between a descriptor in the
reference image and each descriptor in the matching image,
and then selects the best matching pair using (brute-force)
search and distance ratio threshold with 7 = 0.8 as in the orig-
inal SIFT implementation [34], COLMAP [7] and our DCTF
feature descriptor (with ¢ = 0.7) [1]. Feature correspondences
are exhaustively computed between all pairs of images in the
image sequence as discussed in COLMAP [5]-[7]. Feature
matching in the COLMAP internal pipeline and for exter-
nal feature evaluation use the same distance ratio criterion
(Algorithm 3). Feature tracks are established by associating
two-view feature correspondences. Note that the same O (n?)
image matching strategy between n views is used for all
features evaluated in this work. In our related paper we used
faster O(n) image matching between sequential (temporally)
adjacent views [1], [10].

B. Triangulation

Ideally, all 2D points x; ; within a track of matched features
define the image coordinates of an identical 3D point X; in
the scene. In other words, if the 3D coordinates of a point
X; is known, then all its corresponding 2D image points
can be computed by projecting X; onto all views (camera)
using (1). In MVS applications the coordinates of 3D point
X is not available, however, one can estimate it by casting
ray passing through the camera center and the image point in
each camera. In a perfect model, all the cast rays must intersect
at an identical point in 3D which would be equivalent to X.
Howeyver, in real scenarios this is not the case and therefore an
optimal solution for X must be estimated. One such method is
known as triangulation. The output of the triangulation stage
is a sparse 3D point cloud.

C. LM-Based Optimization for Bundle Adjustment

As mentioned previously, the 3D points associated with the
feature tracks are all estimated from the measurements (feature
points) using the geometry of the respective cameras (views).
The camera poses used to cast the rays and estimate the 3D
points in the triangulation process are often highly imprecise.
There is a common optimization method called Bundle Adjust-
ment (BA) to improve the estimation. BA refers to the problem
of jointly refining the estimated camera poses and 3D points
in an optimal manner using reprojection error as the quality
metric. Given a set of n cameras with initial poses (translations
and orientations) and, m 3D points, BA optimization is defined
as a least squares minimization using the L>-norm or sum-of-
squared reprojection errors:

n m
> > ki — gX5 R LK) P (9)

i=1 j=1

E = min

R,’,t,‘,K;,Xj
where R;, t;, K; are respectively the rotation matrix, transla-
tion vector and calibration (intrinsic) matrix of the i-th camera,
X is the j-th 3D point in the scene and observation Xx;; is
the 2D image coordinates of feature X; in camera i. The
mapping g(X;, R;, t;, K;) is the reprojection model defined in
(1). The reprojection error basically measures the Euclidean
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distances between the projection of an estimated 3D point
on its corresponding views using the estimated camera poses
(rotation and translation) and the observation 2D point in the
same view. In an ideal case (noise free), E must be zero.
However, this is not the case due to presence of noise both in
the feature correspondences (e.g. low localization precision)
and also in the estimated camera poses. In order to optimize
these estimations and mitigate the noise level, Levenberg
Marquardt (LM) [8], [52] is the most widely used solver
for BA optimization process. It is worth mentioning that the
intrinsic parameters of the cameras used in our experiments
are all considered to be available. When this is not the case,
camera calibration methods for estimating camera intrinsic
parameters can be utilized [53]-[55].

D. Dense Reconstruction

After generating the sparse point cloud and camera poses
by SfM, COLMAP recovers a dense model of the scene using
a MVS pipeline [6]. The depth and normal estimates for
each registered image are first produced with pixel-wise view
selection using photometric and geometric constraints. Then
the depth and normal estimates are fused into a dense point
cloud. Finally, a dense surface is created from the fused point
cloud.

VI. EXPERIMENTAL RESULTS

We evaluated the local features discussed in Section III
for image-based 3D reconstruction using SfM and MVS on
three synthetic aerial image sequences. Implementation of
handcrafted feature methods SIFT, SURF, AKAZE, and ORB
used the OpenCV 4.2 C++4 (CPU) library. The open source
code and pre-trained models for the deep learning-based
feature methods DeepCompare, LF-Net, and SuperPoint were
by the original authors. Experiments for all methods used the
same computer with an 8-core Intel Core i7-7700HQ 2.80GHz
CPU and an NVIDIA GeForce GTX 1060 GPU.

A. Evaluation Protocols

Algorithm 4 Local Feature Evaluation Procedure for SfM and
MYVS Pipelines Using COLMAP Drivers [7]

1: Feature point detection and description

2: Feature matching <— DISTANCERATIOMATCHING
3: Feature track creation

4: Structure-from-Motion (SfM) using COLMAP

5

6

: Multi-View Stereo (MVS) using COLMAP
: Quantitative evaluation

1) SftM and MVS Using COLMAP: The feature detection
and matching for establishing feature tracks discussed in
Section V-A are based only on 2-D image appearance informa-
tion. We use COLMAP [5]—[7] to evaluate the features in the
context of Structure-from-Motion and Multi-View Stereo since
COLMAP is widely used for image-based 3D reconstruction
tasks [32]. The evaluation procedure is shown in Algorithm 4.
The image-based 3D reconstruction pipeline generally per-
forms SfM first on input image sequences to produce the

optimized camera poses and a sparse representation of the
scene. After that, MVS is performed on the image sequence
and the output of SfM to reconstruct a dense point cloud of the
scene. As a result, the accuracy of a feature matching approach
can have a significant impact on the quality of both SfM and
MVS and it is beneficial to have a quantitative evaluation
of different features in this scenario. We select the following
metrics to quantify the feature performances.

o # Sparse 3D Points: number of 3D points reconstructed
in the sparse model generated by SfM.

o Average Track Length: average number of consecutively
matched feature keypoints (verified observations) along a
feature track within an image sequence.

o Average 2D Observations per Image: average number
of verified matched keypoints in one image within a
sequence.

e Reprojection Error: distance between the projected image
point from the triangulated 3D point and the observed
image point.

o # Inlier Pairs: total number of inlier pairs within a
sequence. An inlier image pair is defined as a pair of
images in the input sequence that contains a minimum of
15 inlier feature matches.

o # Inlier Matches: total number of verified inlier feature
matches (correspondences) within a sequence. Two-view
geometric verification protocols [5] are used to differen-
tiate inlier matches from outliers.

o # Dense 3D Points: number of 3D points reconstructed
in the dense model generated by MVS.

2) Camera Pose Error: To evaluate features in terms of
recovered camera pose accuracy, we compute position error
and angular error for each camera recovered by COLMAP
using feature tracks from each method. The camera poses used
in 3D voxel renderer for synthetic data generation (shown in
Figure 1) are used as ground-truth. The coordinate system of
the recovered cameras is aligned to that of the ground-truth
cameras [56]. The positional L, error for camera i is,

ec(i) = |Ci — Ci (6)
where C; is the estimated position of camera i using

COLMAP, C; as the ground-truth location of camera i, with,

RMSE. =

The maximum position error e.;) can be useful to identify
extreme outliers in the estimated camera positions,

E. = __nllax (ec(D)) (8)

The camera angular error can be measured in several ways
including Euler angles, quaternions, and the polar or rotation
angle, based on an axis-angle representation [57]. Using the
axis-angle representation, a rotation matrix is defined as a
rotation by angle a around an axis, with trace(R) = 1 +
2 cos(a). The angular error for camera i is then [57], [58],

e, (i) = arccos [(trace(R,- ﬁlT) - 1)/2] ©)
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Frae#001
Fig. 5. First and middle frames from three synthetic aerial image
sequences. ABQ-215 and LA-351 sequences were generated by the pro-
posed 3D voxel renderer, consisting of 215 and 351 images respectively.
Image size for both sequences are 1650 x 1100. RIT-DIRSIG is a public

synthetic geospatial dataset consisting of 420 aerial images. Image size
for RIT-DIRSIG is 1200 x 800.

where ﬁi is the COLMAP estimated rotation matrix for
camera i, R; is the ground-truth rotation matrix for camera
i. Similar to position error, Eq. 7 and Eq. 8, RMSE and
maximum of angular error are calculated as,

RMSE, = (10)

(1)

B. Aerial Imagery Datasets

We evaluate the local features discussed in Section III on
two sequences from the proposed MU synthetic WAMI dataset
and a public synthetic geospatial dataset (RIT-DIRSIG). The
detailed data information is shown in Table III. Sample frames
from each image sequence are shown in Figure 5.

1) MU Synthetic WAMI Dataset: We generated two synthetic
WAMI aerial image sequences of urban scenes, i.e. Albu-
querque (ABQ) and Los Angeles (LA), using the 3D voxel
renderer described in Section IV. The dense 3D point cloud
reconstructions were estimated using AgiSoft [50]. The input
to AgiSoft included the real aerial image sequences that were
captured by an airborne camera mounted on an aircraft circling
the downtown areas of ABQ and LA. The flight trajectory
for the real aerial data collection was a full orbit and the
camera constantly tracked the center of the scene. We used

TABLE Il
CAMERA AND FLIGHTPATH PARAMETERS TO GENERATE SYNTHETIC
AERIAL IMAGE SEQUENCES INCLUDING FRAME SIZE (QUARTER
RESOLUTION COMPARED TO ORIGINAL WAMI [10], [15] BY
SHORTENING FOCAL LENGTH, SAME FOV), HEIGHT ABOVE GROUND
LEVEL (AGL), CIRCULAR ORBIT RADIUS (KM), AVERAGE GROUND
SAMPLING DISTANCE (CM) AND LENS FOCAL LENGTH (PIXEL UNITS)

Image Orbit Focal
Dataset  # Images Size AGL Radius GSD Length
(m) (km) (cm) (px)
ABQ-215 215 16501100 1.50 2.50 100 4413.1
LA-351 351 16501100 4.50 4.30 200 44437
RIT-DIRSIG 420 1200800 0.90  1.40 30 3909.0

(a) ABQ-215

Fig.6. Flightpaths used for generating synthetic WAMI sequences. ABQ-
215 consists of 215 cameras (views). Altitude above ground level (AGL)
and orbit radius for ABQ-215 are 1.5km and 2.5km respectively. LA-351
consists of 351 cameras. AGL and orbit radius for LA-351 are 4.5km and
4.3km respectively.

(b) LA-351

the same camera flightpaths for rendering synthetic views,
with exact camera poses, for both ABQ-215 and LA-351
sequence. The camera flight paths are shown in Figure 6.
Note that we used wider lens, shorter focal length to generate
MU Synthetic WAMI dataset in order to accommodate deep
learning algorithms such as LF-Net and SuperPoint that have
difficulty scaling up to large images.

2) RIT-DIRSIG Synthetic Geospatial Dataset: Rochester
Institute of Technology (RIT) Digital Imaging and Remote
Sensing Image Generation (DIRSIG) dataset [17] provides
synthetic aerial imagery and camera pose information. The
synthetic frame was generated using a hand-built 3D scene of
a suburban area. The camera flightpath was a simulated full
circular orbit around the scene.

C. Feature Detection Evaluation

We use the Dice coefficient to assess the quality of the
keypoint feature detections in the synthetic WAMI frames
compared to the original ABQ-215 and LA-351 images [10],
[15] (see Figure 7). The per frame (or per camera) Dice
coefficient for each feature is,

2% [M; s N M, 7|
IM; 7|+ IM; ¢l

Dice(i, f) = (12)
where f’[,; 7 is the keypoints mask for the i th gynthetic frame
(or camera) and feature detector, f, in which each keypoint
is one pixel. M; 7 is the ground-truth keypoints (single pixel
detection) mask extracted using the corresponding real image.
|1VI,', 7| and |[M; 7| represent the number of non-zero elements
in each mask. The Dice coefficient compares the baseline
(ground-truth) keypoints extracted by each feature detector
applied to the original WAMI images with corresponding
synthetic frames. Point correspondences are identified within a
tolerance of 1 pixel in position. The larger the Dice coefficient,
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TABLE IV
TIMING ON THREE SYNTHETIC AERIAL IMAGE SEQUENCES. AVERAGE
PER FRAME TIME IS THE TIME TAKEN TO COMPLETE FEATURE
DETECTION AND DESCRIPTION INCLUDING I/O. SPEED IS THE TIME TO
PROCESS 108 PIXELS. FIRST, SECOND, AND THIRD BEST RESULTS
FOR EACH SEQUENCE ARE HIGHLIGHTED IN RED, ,
AND BLUE, RESPECTIVELY

Average Per Frame Time (s) Speed

Method  Platform —m657sTA 35T RIT-DIRSIG  (s/Mipixels)
STFT CPU 192 1.9 T.00 1.07
SURF CPU 132 151 0.50 0.69
AKAZE ~ CPU 039 040 0.16 0.20
ORB CPU 061 0.6l 0.20 0.29
DeepCompare ~ GPU 4.76 4.82 5.38 3.63
LF-Net GPU 142 139 0.51 0.69
SuperPoint  GPU 072 0.65 0.51 0.43

the more similar the detected keypoints are compared to the
ground-truth. As shown in Figure 7, the majority of keypoints
across detectors and synthetic frames are in agreement with
their corresponding ground-truth keypoint locations with the
highest for SIFT and ORB and lowest for MSER. Both
handcrafted and learned feature detectors generated consistent
detection results across frames in ABQ-215 and LA-351
sequences. MSER detector produced the lowest Dice coeffi-
cient but still more than half of the keypoints MSER detected
on synthetic frames are consistent with those it detected on
the real aerial images. The feature detection performances of
different methods demonstrate the high image quality of the
proposed synthetic WAMI sequences with respect to the real
WAMI dataset.

D. SftM and MVS Evaluation

The quantitative evaluation results of handcrafted features
and learned features for SfM and MVS tasks on synthetic
aerial image sequences are shown in Table V. To minimize the
bias within an image sequence, we use the same number of
feature points for each method, i.e. 5000 keypoints are detected
by each method for ABQ-215 and LA-351 and 3000 keypoints
for RIT-DIRSIG. Average per frame run-time for each method
to perform feature extraction (detection and description) in
three synthetic aerial image sequences is shown in Table IV.
Feature methods are ranked using each evaluation metric,

-1

3
score(f | m) = %Zrank(f | m,s) (13)

s=1
where f denotes a feature method, m an evaluation metric in
Table V, and s one of the synthetic test sequences. We sort the
scores and present the ranking of methods for each metric in
Table VI. Additionally, we compute the overall score of each
method over all evaluation metrics including speed (Table 1V)
using the Equation below and show the overall ranking in the

last column of Table VI.
1 12

score(f) = 7 Z score(f | m) (14)

m=1
As shown in Table V and Table VI, the handcrafted features
produce larger numbers of sparse points as SfM output for
all three synthetic aerial imagery sequences. SURF performs

1 ABQ-215
N 'NV\\,MM/J ’\_/
0.8 ,\—/_\’\\ T — _——
= g
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E
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o
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e SURF
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0 L . . T
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Fig. 7. Localization agreement of 2D feature detectors, between

synthetically generated WAMI frames and original corresponding views,
downsampled to match a synthetic camera. Thresholds adjusted to
get 5000 keypoints in both synthetic and downsampled original images.
Dice coefficient equivalent to percent of point correspondences with a
tolerance of 1 pixel in position.

the best on both ABQ-215 and RIT-DIRSIG sequences and
the third best on the LA-351 sequence. Two binary fea-
tures, AKAZE and ORB, provide similar number of sparse
points as SIFT. Deep learning-based features generate less
sparse points in comparison. Number of inlier pairs exhibits
a similar pattern that handcrafted features outperform the
learned features in general. SIFT and SURF provide con-
sistent performance on three sequences, producing the most
inlier image matching pairs. ORB which is widely used in
simultaneous localization and mapping (SLAM) also yields
comparable results. This metric indicates that SIFT, SURF,
and ORB are capable of matching features between images
with large perspective variations. Additionally, AKAZE and
ORB perform well in terms of number of dense points
as MVS output. Surprisingly, handcrafted features including
SIFT, SURF, and AKAZE provide more accurate localization
and smaller reprojection errors compared to learned features.
However, the average track length using these handcrafted
features are much shorter than tracks produced by recent deep
learning-based features, like LF-Net and SuperPoint. Longer
feature tracks tend to result in greater average reprojection
error according to (5) because longer tracks consist of more
cameras which on the other hand tend to generate more
precise camera pose refinement (see Section VI-E for detailed
discussion). For number of observations per image and number
of inlier matches, LF-Net and SuperPoint also generated supe-
rior results by producing a larger number of accurate feature
matches between image pairs. By comparison, DeepCompare
which is an early approach for deep learning based feature
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TABLE V
FEATURE EVALUATION FOR SFM AND MVS ON THREE SYNTHETIC AERIAL IMAGE SEQUENCES. RMSE AND MAXIMUM OF POSITION ERROR AND
ANGULAR ERROR ARE THE EVALUATION METRICS FOR CAMERA POSE ACCURACY. UNITS FOR POSITION ERROR AND ANGULAR ERROR ARE
METERS AND DEGREES, RESPECTIVELY. # Dense 3D Points |S USED FOR MVS EVALUATION AND THE OTHER METRICS ARE FOR SFM
EVALUATION. FIRST, SECOND, AND THIRD BEST RESULTS FOR EACH COLUMN IN EACH IMAGE SEQUENCE ARE HIGHLIGHTED IN RED, ,
AND BLUE, RESPECTIVELY

ABQ-215 (# frames: 215)

# Sparse  Avg Track Avg 2D Obs # Inlier # Inlier Reproj £ # Dense RMSE. RMSE,,

Method 3D lr;oints L%:ngth Pfr Image Pairs Matches (ng.JS) 3D Points | (Position) Max Ee (Angular) Max Eao
SIFT 62,956 15.94 4669 17,792 6,830,488 0.43 2,087,275 1.27 2.63 0.0263 0.0390
SURF 71,793 13.45 4489 22,449 4,905,780 0.56 2,080,177 1.63 3.87 0.0249 0.0468

AKAZE 70,819 14.11 4648 7,000 3,680,955 0.41 2,083,609 2.35 4.15 0.0438 0.0631
ORB 68,125 8.51 2696 22,710 1,550,521 0.60 2,131,788 5.35 6.94 0.1011 0.1371

DeepCompare 39,883 14.09 2613 4,601 1,706,791 0.80 2,111,696 3.50 7.90 0.0427 0.0629
LF-Net 50,602 20.06 4722 8,742 6,408,293 0.62 2,083,745 1.08 2.58 0.0120 0.0196
SuperPoint 46,261 23.60 5078 7,149 8,794,655 0.75 2,087,964 1.21 2.83 0.0147 0.0271
LA-351 (# frames: 351)
# Sparse  Avg Track Avg 2D Obs # Inlier  # Inlier =~ Reproj £ # Dense RMSE. RMSE o, .

Method 3D Points Length Per Image Pairs Matches (Eq. 5) 3D Points | (Position) Max E. (Angular) Max Eq
SIFT 62,153 27.06 4792 61,289 27,600,727 0.49 3,797,807 2.39 5.73 0.0403 0.0597
SURF 59,932 24.64 4207 60,404 16,227,900 0.62 3,826,895 4.06 9.74 0.0540 0.0742

AKAZE 55,130 25.60 4021 21,160 11,760,395 0.40 3,866,452 6.18 13.61 0.0983 0.1201
ORB 63,611 17.47 3166 57,190 4,772,146 0.61 4,070,464 8.94 22.45 0.0940 0.1174

DeepCompare 47,929 22.97 3137 13,752 6,013,048 0.89 3,944,201 5.48 15.38 0.0382 0.0742
LF-Net 48,270 34.67 4768 39,915 24,464,602 0.69 3,806,072 3.26 8.72 0.0278 0.0478
SuperPoint 42,905 39.41 4817 17,155 26,223,759 0.71 3,798,926 1.94 5.28 0.0223 0.0376
RIT-DIRSIG (# frames: 420)
# Sparse  Avg Track Avg 2D Obs # Inlier # Inlier Reproj £ # Dense RMSE. RMSE,,

Method 3D lgoints Lgength Pegr Image Pairs Matches (é)q.JS) 3D Points | (Position) Max Ee (Angular) Max Fao
SIFT 45,572 25.38 2754 87,990 23,125,789 0.51 6,892,999 1.69 5.19 0.2509 0.2811
SURF 50,714 23.63 2854 87,989 15,308,022 0.65 6,923,138 2.40 9.70 0.1641 0.8531

AKAZE 44,486 27.76 2941 50,204 12,866,713 0.49 6,955,397 291 6.31 0.3799 0.4811
ORB 35,031 28.43 2371 87,571 5,451,781 0.80 7,395,128 7.35 17.13 0.5556 0.8162

DeepCompare 19,881 16.33 773 12,186 1,433,961 1.01 7,463,046 9.77 25.11 0.6638 1.0050

LF-Net 39,054 30.72 2857 87,581 15,845,534 0.71 6,892,489 241 5.44 0.1959 0.2325

SuperPoint 32,401 35.19 2714 24,842 19,113,996 0.97 6,915,165 1.39 3.58 0.0617 0.0824
TABLE VI

AVERAGE RANK (EQ. 13) OF FEATURES FOR EACH EVALUATION METRIC (COLUMN) OVER THREE SYNTHETIC AERIAL IMAGE SEQUENCES IN
TABLE |V AND TABLE V. LAST COLUMN SHOWS OVERALL RANK FOR EACH FEATURE USING AVERAGE OF RANKS FOR ALL METRICS (EQ. 14)

Rank # Sparse Avg Track Avg 2D Obs # Inlier # Inlier Reproj £ # Dense | RMSE. < E RMSE Max E. Speed Overall
3D Points Length Per Image Pairs Matches (Eq.5) 3D Points |(Position) ¢ (Angular) « P Rank
Super- SuperPoint/ Super- Super- Super- Super- Super-
! SURF Point LF-Net SIFT SIFT AKAZE ORB Point Point Point Point AKAZE Point
2 SIFT  LF-Net SIFT SURF  SUPer g Deep- SIFT  SIFT  LF-Net LF-Net | ORB SIFT
Point Compare
3 AKAZE SIFT AKAZE ORB LF-Net SURF AKAZE | LF-Net LF-Net SURF SIFT S}?(ﬁirt_ AKAZE
4 ORB  AKAZE SURF  LF-Net SURF  ORB S;?f,irt SURF SURF  SIFT  SURF | SURF | LF-Net
Deep- Deep-
5 LF-Net SURF ORB AKAZE AKAZE LF-Net SURF | AKAZE AKAZE LF-Net || SURF
Compare Compare
6  Super ORB Deep- Super-  Deep- — Super- SIFT Deep- — GRB  AKAZE AKAZE| SIFT | ORB
Point Compare Point Compare  Point Compare
7 Deep- Deep- ) Deep- Deep- LE-Net ORB Deep- ORB ORB Deep- Deep-
Compare  Compare Compare Compare Compare Compare || Compare

extraction provides weak feature matching performance,
resulting in the smallest number of observations per frame,
fewest number of inlier pairs and the largest reprojection
error.

Similar to the observation by Fan et al. in [16], our evalua-
tion results demonstrate that a binary feature has an advantage
of speed and is competent for a SfM pipeline by producing
reasonable results compared to the floating-point features such
as SIFT and SURF which are computationally expensive.

However, the binary feature ORB generates one of the shortest
average track length among all the features. Moreover, ORB
produces significantly fewer inlier matches than SIFT, SURF,
and AKAZE using the same amount of feature keypoints.
Another observation in [16] on the learned features under-
performing the handcrafted features (SIFT and SURF) is
consistent with ours when only the usual indirect metrics such
as reprojection error and number of generated sparse points
etc, are taken into account.
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Fig. 8. Visualization of position error (top) and angular error (bottom)
for each method on three synthetic aerial image sequences using box
plots. The bottom and top edges of each box represent the 25-th and
75-th percentiles respectively. The bar inside each box marks the median
value. The whiskers extend to the extreme inlier data points. The outlier
data points are marked with red plus symbols. Units for position error
and angular error are meters and degrees, respectively.

E. Camera Pose Estimation Accuracy

The camera pose estimation accuracy as an output of SfM
is evaluated by computing the position error and angular error
compared to the ground-truth camera poses for each view in
the sequence. Our results show that the learned features (LF-
Net and SuperPoint) in recent years produce superior results in
terms of precision of the estimated camera poses (rotation and
translation). We believe the reason behind this is the ability
of these learned features to persistently detect and accurately
match keypoints over the image sequences. This is verified
in the Avg Track Length column in Table V despite the fact
that the reprojection error for these advanced learned features
are higher than that of the handcrafted features like SIFT and
SURF. As shown in Table VI, SIFT and SURF also generate
low camera pose errors as well as relatively long feature
tracks. This is aligned with the observation in [10] that a
longer feature track leads to camera pose refinements of higher
quality. In other words, the longer tracks tie more cameras to
each other within the BA optimization and lead to a lower drift
on the camera 3D poses by keeping many cameras together.
The summary statistics of position error and angular error of
each method for three image sequences are illustrated using
box plots in Figure 8. The average position errors and angular
errors of each method for the three sequences are shown
in Table VII. Additionally, we evaluated the camera pose
estimation accuracy of COLMAP baseline using three SIFT
implementations provided (SIFT-GPU, RootSIFT [59], and
DSP-SIFT [29]). COLMAP using RootSIFT and SIFT-GPU
features generate better or comparable results with SuperPoint,
slightly outperforming COLMAP using DSP-SIFT features.

TABLE VII
AVERAGE REPROJECTION ERROR (PIXELS), CAMERA POSE ERRORS
RMSE AND MAXIMUM POSITION ERROR (METERS), AND ANGULAR
ERROR (DEGREES) ACROSS THREE SYNTHETIC AERIAL SEQUENCES
FOR THE SEVEN FEATURE METHODS EVALUATED. FEATURES ARE
SORTED BY THEIR AVERAGE RANK (COLUMNS 3 TO 6) ACROSS
DATASETS IN TABLE V; SIFT AND LF-NET ARE TIED

Reproj E RMSE. RMSE

Method =g "5) " (Position) M2* P (Angular) M2X P
SuperPoint 0.81 1.51 3.90 0.03 0.05
SIFT 0.48 1.78 4.52 0.11 0.13
LF-Net 0.67 2.25 5.58 0.08 0.10
SURF 0.61 2.70 7.77 0.08 0.32
AKAZE 0.43 3.81 8.02 0.17 0.22
ORB 0.67 7.21 15.51 0.25 0.36
DeepCompare 0.90 6.25 16.13 0.25 0.38

In summary, all methods demonstrate consistent cam-
era pose refinement performances across different image
sequences. SuperPoint as the state-of-the-art learned features
outperform the rest of the feature methods and both pro-
vide the lowest position and angular errors across frames
with small variances. Handcrafted floating-point SIFT and
SUREF yield comparable results as LF-Net. Handcrafted binary
features AKAZE has remarkably higher speed performance
but its camera pose refinement accuracy is inferior to SIFT
and SURF. Another binary feature ORB and the early deep
learning-based method DeepCompare exhibit the worst results
in terms of both position error and angular error. Both ORB
and DeepCompare show large error variances across frames
in each sequence.

VII. CONCLUSION

We evaluated the performance of some of the most popular
handcrafted and deep learning-based local features, within the
widely used COLMAP open source SfM and MVS pipelines.
We used a pixel accurate voxel renderer to generate simulated
city-scale WAMI datasets from an AgiSoft 3D point cloud
model reconstructed from real aerial imagery, as well as a
fully synthetic open source campus model RIT-DIRSIG with
synthetic aerial imagery. Unlike most existing work in this
domain, our evaluations includes metrics for measuring the
feature performance on the camera pose estimation, as a
result of the proposed realistic-looking synthetic view gen-
eration framework. Our categorized ranking of the features
shows the suitability and reliability of each type of feature
depending on the application. Handcrafted features produced
more reconstructed sparse and dense points with smaller
reprojection errors compared to the deep learning-based fea-
tures. Surprisingly, smaller reprojection error did not result
in better camera pose estimates. However, recently developed
learning-based features, i.e. SuperPoint and LF-Net, provided
longer feature tracks and greater number of inlier matches.
More importantly, advanced learned features outperformed
the handcrafted features in terms of recovered camera pose
accuracy. We observe that the earlier DeepCompare learned
feature generated lower quality results in general. Handcrafted
binary features, AKAZE and ORB, had a significant speed
advantage but their performance was inferior to other state-of-
the-art features. Future work will focus on further improving
image quality of the synthetic aerial imagery, using calibrated
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scale models and evaluating features using additional SfM and
MVS pipelines.
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