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Abstract. Aerial video captured from an airborne platform has an expanding
range of applications including scene understanding, photogrammetry, survey-
ing and mapping, traffic monitoring, bridge and civil infrastructure inspection,
architecture and construction, delivery, disaster and emergency response, news
and film, precision agriculture and environmental monitoring and conservation.
Some of the challenges in analyzing aerial video to track pedestrians, vehicles
and objects include small object size, relative motion of the object and platform,
sensor jitter and quality of imaging optics. An analytic image stabilization ap-
proach is described in this chapter where pixel information from the focal plane
of the camera are stabilized and georegistered in a global reference frame. The
aerial video is stabilized to maintain a fixed relative displacement between the
moving platform and the scene. The proposed algorithm can be used to stabilize
aerial imagery even when the available GPS and IMU measurements from the
platform and sensor are inaccurate and noisy. Camera 3D poses are optimized us-
ing a homography-based robust cost function, but unlike most existing methods,
the homography transformations are estimated without using any image-to-image
estimation techniques. We derive a direct closed-form analytic expression from
3D camera poses that is robust even in the presence of significant scene parallax
(i.e. very tall 3D buildings and manmade or natural structures). A robust non-
linear least squares cost function is used to deal with outliers and speeds up com-
putation by avoiding the use of RANdom SAmple Consensus (RANSAC). The
proposed method and its efficiency is validated using several datasets and sce-
narios including DARPA Video and Image Retrieval and Analysis Tool (VIRAT)
and high resolution Wide Area Motion Imagery (WAMI). scenarios.

Keywords: Video stabilization, image registration, georegistration, camera pa-
rameter optimization, homography, parallax, 3D

1 Introduction

Wide Area Motion Imagery (WAMI), also known as, wide area aerial surveillance
(WAAS), wide-area persistent surveillance (WAPS) or wide field-of-view (WFOV) imag-
ing is an evolving imaging capability that enables persistent coverage of large geo-
graphical regions on the order of a few to tens of square miles [1] at tens of centimeter
resolution, or very small areas such as bridges and construction projects at very high
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resolution from closer range using the same sensor package. It has become even more
popular due to performance advances in sensor technologies, computing hardware, bat-
tery performance and reduction in size, weight and cost of these components. WAMI
sensors can be placed on many types of airborne platforms including fixed wing or
multi-rotor Unmanned Aerial Vehicles (UAVs) - both fixed wing and multi-rotor drones,
small (manned) aircraft and helicopters [2]. Depending on the imaging sensor charac-
teristics and aircraft altitude, these systems can cover a small city-sized area with an
approximate Ground Sampling Distance (GSD) of 10 cm to 30 cm per pixel, tens to
hundreds of megapixels at the focal plane using single or multiple optical systems (e.g.
6600×4400 RGB color) with a frame rate of 1 to 10 Hz.

Detection of small and distant moving objects, e.g. cars or pedestrians, in a scene
which is observed by a camera that by itself undergoes motions and jitters is extremely
challenging. This can be even more challenging considering that small objects like cars
may appear as 10 to 25 pixels in their length. To improve detection and tracking in
aerial imagery [3–5] in which videos are captured on a moving platform, the images are
stabilized (registered) to maintain the relative movement between the moving platform
and the scene fixed. An accurate image stabilization in such scenarios can be important
for both higher level video analytics and visualization. Traditionally, aerial image reg-
istration methods are performed through applying 2D homography transformations in
the image space [6–8]. Aerial image registration is challenging for urban scenes where
there are large 3D structures (tall buildings) causing high amount of occlusion and par-
allax. In such situations, the presence of parallax can lead to significant error when
inter-image 2D registration approaches are used [9].

In this paper, a method to register aerial images is proposed which utilizes available
(noisy or approximate) GPS and IMU measurements from the airborne platform and ro-
bustly stabilize images by optimizing camera 3D poses using a homography-based cost
function. Unlike most existing methods, the homography transformations in our ap-
proach are not estimated using any image-to-image estimation techniques, but directly
derived as a closed-form analytic expression from the 3D camera poses. In our previous
work we leveraged our fast Structure-from-Motion (SfM) technique (BA4S[10, 11]) to
derive a novel georegistration approach that did not need to estimate local patch-based
homographies and used an analytical model that was both accurate and fast [12]. Al-
though that approach was fast and globally accurate, its cost function is defined over
the full 3D space in order to optimize the retinal plane reprojection pixel error over
the full 3D scene as required by most SfM downstream applications (e.g. dense 3D re-
construction [13–16]). However, as an alternative to full SfM-based georegistration, we
propose to stabilize an image sequence or remove jitter, with the objective of deriving
a smooth motion trajectory over the sequence of images such that the dominant ground
plane is stabilized minimizing a 2D metric distance-based error function. Therefore, in
this paper we propose an alternative approach for the parameter optimization with an
emphasize on stabilizing the geoprojected aerial imagery by defining a cost function
over a single dominant 2D Euclidean world plane. The points that do not lie on the
dominant are automatically marginalized during the optimization process. In the exper-
iments we will show that the method proposed in this paper is more robust in situations
where the available camera sensor pose measurements are extremely inaccurate.
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1.1 Related Work

The majority of approaches for image stabilization use pairwise and combinatorial
matching and warping transformation for stabilizing the ground plane prior to mov-
ing object detection [6–8, 17–26]. Aerial image registration is challenging for urban
scenes where there are large 3D structure and tall buildings causing high amount of
occlusion and parallax [9, 27, 12]. An aerial image registration method was proposed
in [6, 28] which uses a multi-layer (coarse to fine) homography estimation approach to
deal with parallax and occlusions. Molina and Zhu [17] proposed a method to register
nadir aerial images in which a pyramid block-based correlation method was used to
estimate inter-frame affine parameters.

Direct georeferencing of high-resolution unmanned aerial vehicles (UAV) imagery
was discussed in [29] while performances of different SfM softwares (Photoscan [30],
Pix4D [31] and Bundler [32, 33]) were evaluated. Pritt [34] proposed a fast orthorec-
tification method for registration of thousands of aerial images (acquired from small
UAVs). In [35], IMU was used to register laser range measurements to the images cap-
tured from a stereo camera. Crispell et al. introduced an image registration technique to
deal with parallax, assuming to have a dense 3D reconstructed model of the scene [9].
In [36] GPS and IMU were used to perform an initial (coarse) orthorectification and
georeferencing of each image in an aerial video. Then a RANSAC-based method was
used to find optimal affine transformations in 2D image space. A method for register-
ing and mosaicking multi-camera images was proposed in [7]. In the proposed method,
registration is achieved using control points and projective image-to-image transforma-
tions (using a variation of RANSAC). Recently, some image-based methods for robust
registration (mosaicking) of long aerial video sequences have been introduced in [37–
39].

2 Feature Track Building

In persistent aerial imagery, images are sequentially acquired meaning that one knows
that what frame is adjacent to which one. By leveraging the temporal consistency of the
images and using them as a prior information, the time complexity of matching can be
reduced to O(n). Interest points are extracted from each image using a proper feature
extraction method. Starting from the first frame, for each two successive image frames,
the descriptors of their interest points are compared. While successively matching them
along the sequence, a set of feature tracks are generated [40]. A track basically indicates
that a potentially unique 3D point in the scene has been observed in a set of image
frames.

3 Imaging Model

Fig. 1 shows a world coordinate system W and a dominant ground plane π spanning
through its X and Y axes. The scene is observed by n airborne cameras C1, C2 . . . Cn.
To make the notations succinct, we will omit the camera indices from now on unless
otherwise stated. The image homogeneous coordinate of a 3D point X = [x y z]

ᵀ
from
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Fig. 1. A scene and its dominant ground plane π is observed by n airborne cameras. For an on-the-
plane 3D point such as X1, it homographic transformation from the image plane of every single
camera onto π , all merge together and converge to the same identical 3D point X1. Whereas, for
an off-the-plane 3D point such as X2, its homographic transformations are spread out (diverged).

the world reference system W projected on the image plane of camera C is obtained as

x̃ = K(RX+ t) (1)

where K is the calibration matrix (intrinsics), R and t are respectively the rotation matrix
and translation vector from W to C. For a 3D point X lying on π , its Z component is
zero:

x̃ = K(
[
r1 r2 r3

]x
y
0

+ t)) (2)

r1, r2 and r3 being the first, second and third columns of R, respectively. After simpli-
fication we have

x̃ = K
[
r1 r2 t

]
π x̃ (3)

where π x̃ = [x y 1]
ᵀ

represent the 2D homogeneous coordinates of the 3D point X on
π . One can consider the term K[r1 r2 t] as a 3×3 homography transformation matrix
which maps any 2D point from π onto the camera image plane as:

x̃ = Hπ→c
π x̃. (4)
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Likewise, a homogeneous image point x̃ can be mapped on π as:

π x̃ = Hc→π x̃ (5)

where Hc→π is the inverse of Hπ→c and is equal to:

Hc→π =
[
r1 r2 t

]−1 K−1. (6)

Assuming T =
[
r1 r2 t

]
, f as the focal length in pixel, and (u,v) as the camera image

principal point, (6) can be expressed as:

Hc→π = T−1

 f 0 u
0 f v
0 0 1

−1

(7)

Hc→π =
1
λ

 m11 −m21 [−m11 m21 m31]v
−m12 m22 [ m12 −m22 −m32]v

r13 r23 − rᵀ3v

 (8)

where v =
[
u v f

]ᵀ and λ is a scalar defined as

λ = f rᵀ3t, (9)

and mi j is the minor(i, j) of matrix T. One can omit λ in (8) as a homography matrix is
defined up-to-scale, yielding:

Hc→π =

 m11 −m21 [−m11 m21 m31]v
−m12 m22 [ m12 −m22 −m32]v

r13 r23 − rᵀ3v

 (10)

4 Optimization

Suppose our the global reference system W in Fig. 1 is aligned with NEU (North-East-
Up). Reminding that π is the dominant ground plane in the scene and there are n cam-
eras (or one camera in n different poses) observing the scene. The pose of each camera
Ci is defined by a rotation matrix Ri and ti which are defined from the global coordinate
system to the camera local coordinate system. Also suppose to have m feature tracks in
the scene. A feature track is basically a sequence of feature points which are matched
across the sequence of image frames. All features within a track are the observations
corresponding to a hypothetically identical 3D point in the scene. The homogeneous
image coordinates of a 3D point X j on the image plane of camera Ci is expressed as x̃i

j,
and it can be mapped from image plane to the Euclidean plane π as

π x̃i
j = Hi→π x̃i

j. (11)

Ideally, if 3D point X j lies on the plane π , then mapping of all its corresponding image
observations (x̃1

j , x̃2
j , . . . x̃n

j ) onto the plane, using (11), have to merge to an identical 2D
point on π , which also coincides on the 3D point X j itself (see Fig. 1):
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Fig. 2. The optimization scheme: Two matched image points in a features track j, x1
j from C1

and xn
j from Cn, are available as the observations corresponding to hypothetically an identical 3D

point X j in the scene. The features points are projected on π using the analytical homographies
defined in (10), where π is the dominant ground plane of the scene. If the 3D point X j lies on
π , its corresponding mapped homography points should be all close by each other. Indeed, in
an ideal case where the camera poses are accurate, all such mapped points on π have to merge
and coincide to a single point, however it is not often the case due to different source of noise
in IMU and GPS measurements. Here, we use the mean of the homographic transformed points
on π as an estimate to initialize the optimization. e1

j and en
j are the Euclidean distances between

each projected point and the mean. The optimization defined in (15) aims to minimize these
distance errors by adjusting the camera poses. Notice that if 3D point X j does not lie on π , its
error values are automatically marginalized during the optimization process, thanks to the used
robust functions.
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π x̃1
j =

π x̃2
j = · · ·= π x̃n

j ' X j (12)

However, it is not the case in real scenarios due to different source of errors such as
inaccuracy in the measured camera poses (e.g. from GPS/IMU). Therefore the set of
mapped 2D points,

{
π x̃i

j | i = 1 . . .n
}

, corresponding to 3D point X j, will be dispersed
around the actual point π x̃ j on π . One can consider, π x̂ j, the centroid of the distribution
of 2D projected points, as an estimate for the actual point:

π x̂ j =
1
n

n

∑
i=1

π x̃i
j (13)

The Euclidean distance between each mapped point π x̃i
j and the estimated centroid is

considered as an error metric:

e j =
n

∑
i=1
‖F (Hi→π x̃i

j)−F (π x̂ j)‖2 (14)

Overall error for all points and cameras can be used as a cost function to optimize Ri,
ti and π x̂ j (see Fig. 2):

E = min
Ri,ti,π x̂ j

n

∑
i=1

m

∑
j=1
‖F (Hi→π x̃i

j)−F (π x̂ j)‖2 (15)

where F (.) designates a function that returns the Euclidean coordinates from 2D ho-
mogeneous ones. Such a minimization can be done through using various iterative
optimization techniques among which Levenberg-Marquardt methods are well-known
and popular in the literature [41]. Here, total number of parameters to be optimized is
6n+ 2m, where n is the number of views and m is number of tracks. Basically, each
view i has 6 parameters including 3 for the rotation and 3 for the translation compo-
nents. Likewise, each track j is represented by the 2D mean position vector, π x̂ j, as
expressed by (13). Total number of parameters in the observation space is 6 2×n×m.
Note that the length of each track is 6 n.

The introduced mathematical model for image registration is held only if all 3D
points to be imaged lie on the reference ground plane π (assuming to have perfect
features correspondences). However, in WAMI and particularly in urban scenarios, the
presence of 3D structures/buildings is highly expected. The observed 3D points from
such structures once imaged and mapped onto plane π , their corresponding 2D points
would not coincide on π and will be dispersed. This phenomenon is known as parallax
and its magnitude gets stringer as the 3D point get farther from the plane (π) which
induces the homography. For example, in Fig. 1, consider X2 as a 3D point which is
off-the-plane. It is imaged as x1

2, x2
2 and xn

2 on the image planes of cameras C1, C2 and
Cn. Mapping them on π using homography transformations will result πx1

2, πx2
2 and πxn

2.
As illustrated in Fig. 1, these mapped points are all spread out on π , and the radius of
distribution is proportional to the magnitude of parallax.

There is another type of noise which is likely to exist in the tracks of feature cor-
respondences along the image sequence. The source of such noise can be from the
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precision of the feature extraction algorithm or errors in the feature matching algorithm
which could lead to many mismatches or outliers. In real scenarios, one can expect to
have a considerable percentage of outliers. To deal with outliers mostly RANSAC (or
its variations) is used in the literature. In this context, a RANSAC-based approach tries
to (jointly) estimate a homography model and at the same time to eliminate the outliers,
by looping through a hundreds of iterations. In each iteration of RANSAC, a subset of
correspondence candidates is randomly chosen, a homography model is estimated for
the chosen population and then the fitness of the whole population of the correspon-
dences is measured using the estimated model. In this randomly exhaustive process, a
model that provides the most consensus result would be chosen and at the same time the
feature matches which do not obey the estimated model within a threshold will be iden-
tified as outliers. Notice that in our work, the homographies are analytically derived
and no RANSAC estimation is used and instead the inaccurate sensor measurements
from the platform are directly incorporated. Not using RANSAC gives the advantage
of avoiding any adverse random behaviour in the model estimation. However, as a con-
sequence of eliminating RANSAC, the existing outliers can not be explicitly identified.
In order to address this issue we propose to use a robust error function in an appropriate
formulation of the problem.

Robust functions also known as M-estimators are popular in robust statistics and
reduce the influence of outliers in estimation problems. We have observed that not every
choice of a robust function works well [42] and a proper robust function is critical for
achieving a robust minimization of the reprojection error when the initial parameters
are too noisy and outliers are not explicitly eliminated beforehand. Two commonly used
robust statistics functions are the Cauchy (or Lorentzian) and Huber [41] measures:

– Cauchy or Lorentzian cost function

ρ(s) = b2 log(1+ s2/b2) (16)

– Huber cost function

ρ(s) =

{
s2 if |s|< b
2b |s|−b2 otherwise

(17)

where s is the residual (i.e. reprojection error) in (15) and b is usually one or a fixed
user defined value. We have chosen Cauchy robust function since it down-weight the
residuals more rigidly [43]. This characteristic of Cauchy is appropriate for our purpose
specially because there expect to be enormous number of large residuals due to potential
parallaxes in the scene. One can consider using other types of robust functions such as
a generalization of the Cauchy/Lorentzian, Geman-McClure, Welsch, and generalized
Charbonnier loss functions [44].

The proposed optimization method is presented in a pseudo code form in Algorithm
1. This method is an alternative approach for the parameter optimization with an em-
phasize on stabilizing the geoprojected aerial imagery by defining a cost function over a
single dominant 2D Euclidean world plane. The points that do not lie on the dominant
ground plane are automatically marginalized during the optimization process, thanks
to the used robust functions, instead of using a RANSAC-based outlier elimination ap-
proach.
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Algorithm 1 Analytical airborne video stabilization.
Input : A set of camera parameters acquired from inaccurate platform sensors, e.g. IMU and

GPS: (Ri, ti, f ), i = 1 . . .n, n being number of cameras/images.
m sets of tracked features along the sequence.

Output : Optimized homography matrices to robustly stabilize the imagery
1: v←

[
u v f

]ᵀ
2: for i = 1 to n do
3: Ti←

[
r1,i r2,i ti

]
4: Assign mbc,i as the minor(b,c) of matrix Ti

5: Hi→π ←

 m11,i −m21,i
[
−m11,i m21,i m31,i

]
v

−m12,i m22,i
[

m12,i −m22,i −m32,i
]

v
r13,i r23,i − rᵀ3,iv


6: end for
7: for j = 1 to m do
8: for i = 1 to n do
9: π x̃i

j←Hi→π x̃i
j

10: end for
11: π x̂ j←

1
n

∑
n
i=1

π x̃i
j

12: end for
13: E← ∑

n
i=1 ∑

m
j=1 ‖F (Hi→π x̃i

j)−F (π x̂ j)‖2

14: Optimize Ri, ti and π x̂ j to minimize the cost function E
15: for i = 1 to n do
16: T̂i←

[
r̂1,i r̂2,i t̂i

]
17: Assign m̂bc,i as the minor(b,c) of matrix T̂i

18: Ĥi→π ←

 m̂11,i −m̂21,i
[
−m̂11,i m̂21,i m̂31,i

]
v

−m̂12,i m̂22,i
[

m̂12,i − m̂22,i − m̂32,i
]

v
r̂13,i r̂23,i − r̂ᵀ3,iv


19: end for
20: return optimized homography matrices Ĥi→π , i = 1 . . .n

5 Experiments

The proposed method was applied to the DARPA Video and Image Retrieval and Analy-
sis Tool (VIRAT) dataset and several WAMI datasets provided by Transparent-Sky[45].
The introduced sequential feature tracking method was used to track the identified
SIFT features over each video sequence, followed by applying the proposed optimiza-
tion method. The top images in Fig. 3 are some sample frames from a shot in the se-
quence ”flight2Tape1 2” of VIRAT dataset which contain 2400 images. The metadata
that come with the images are extremely inaccurate. To the best of our knowledge these
metadata have not been of use in any SfM, stabilization and geoprojection project. How-
ever, our approach managed to seamlessly register the full video shot, smoothly with
no jitter or jump. The results corresponding to the frames of the first row are shown in
Fig. 3 bottom.

Fig. 4 shows the result of running our method on a WAMI aerial imagery. The
metadata and images were provided by Transparent-Sky [45] via flying a fixed wing
airplane over the downtown of Berkeley in California. Two exemplary images, with



10 Lecture Notes in Computer Science: Authors’ Instructions

(a) Original images (frame numbers: 3615, 4610, 5351 and 5901).

(b) Stabilized and geoprojected images (frame numbers: 3615, 4610, 5351 and 5901).

Fig. 3. Stabilized sequence of VIRAT dataset using the proposed method. We used a full shot from
”flight2Tape1 2” which contain 2400 frames of 720× 480 pixels. The camera metadata in all
VIRAT datasets are extremely inaccurate. Our approach managed to perform the georegistration
and stabilization on this long sequence without any jump or jitter in the result.

about 45◦ difference in their viewing angle along (200 frames apart along the sequence),
are shown in Fig. 4-top. Their corresponding georegistered frames are plotted in Fig.
4-middle. The bounding boxes of the regions of the interest from the two frames are
zoomed and shown in Fig. 4-Bottom. The rectified epipolar line (yellow dotted line)
demonstrate the alignments for an exemplary pair of corresponding points (in red) in
the two frames after stabilization. A similar evaluation is demonstrated for ABQ (Al-
buquerque downtown area) WAMI dataset, in Fig. 5. Fig. 6 depicts the original and
stabilized images from another WAMI dataset, LA downtown area. As one can see,
everything from the dominant ground plane is well aligned between the two registered
views and just the building and off the ground objects were wobbled which is due to the
existence of parallax. Despites the presence of strong parallax, the method succeeded
to seamlessly stabilized the images without any jitter. It is worth to reminding that no
RANSAC or any other random-based method has been used in the proposed.

6 Conclusions

We proposed a stabilization and geoprojection method which is able to use available
sensor metadata (i.e. GPS and IMU) to register airborne video in a robust and seamless
manner. This became possible by deriving a set of analytical homography transforma-
tions and defining a metric cost function over a dominant 2D Euclidean ground plane in
the scene. The solution has been formulated such that no RANSAC (any random-based
iterative techniques) is used, in contrary to most existing approaches. The robustness in
our work is achieved by defining an appropriate (robust) cost function which allows to
implicitly marginalize the outliers automatically within the optimization process. Our
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Fig. 4. Stabilization result of Berkeley dataset. Top: two raw WAMI images, with size of 6600×
4400 pixels (frame #0 at left, frame #200 at right). Middle: geoprojection of the raw frames
after stabilization using the proposed approach. Bottom: Zoomed-in versions of the middle row
corresponding to the areas which are marked by purple and green bounding boxes. The rectified
epipolar line (yellow dotted line) depicts the alignment for a pair of corresponding points (in red)
after stabilization.
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Fig. 5. Stabilization result of Albuquerque dataset. Top: two raw WAMI images, with size of
6600× 4400 pixels (frame #0 at left, frame #100 at right). Middle: geoprojection of the raw
frames after stabilization using the proposed approach. Bottom: Zoomed-in versions of the mid-
dle row corresponding to the areas which are marked by purple and green bounding boxes. The
rectified epipolar line (yellow dotted line) depicts the alignment for a pair of corresponding points
(in red) after stabilization.
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(a) Original images (frames #0 and #100).

(b) Stabilized and geoprojected images (frames #0 and #100).

Fig. 6. Stabilized sequence of Los Angeles (California) dataset using the proposed method. The
high resolution WAMI imagery (with the image size of 6600×4400) along with initial metadata
were provided by Transparent-Sky [45]. Despites presence of strong parallax induced by the tall
buildings, our method managed to smoothly stabilize the WAMI images.
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approach has been tested over a very challenging dataset of DARPA, known as VIRAT.
Unlike the imagery component of this dataset is very rich and has been frequently used
in different algorithms by several well known research groups, its metadata component
is extremely challenging. We know no group or research work which could have relied
on the metadata in this dataset and used it in a SfM or stabilization method, as the avail-
able sensor measurements are highly inaccurate. Nevertheless, our approach has been
tested on this dataset where the challenging metadata was directly utilized to perform a
smooth and seamless stabilization on the video sequence. In addition to VIRAT dataset,
two high resolution WAMI datasets corresponding to the downtown areas of Berkeley
and Los Angeles were successfully tested and stabilized in our experiments.
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