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Abstract—Advances in sensor technologies and embedded low-
power processing provide new opportunities for using Wide
Area Motion Imagery (WAMI) across a spectrum of mapping
and monitoring applications covering large geospatial areas for
extended time periods. While significant developments have been
made in video analytics for ground or low-altitude aerial videos,
methods for WAMI have been limited due to lack of benchmark-
ing datasets, data format complexities, lack of labeled training
videos, and high data processing requirements. This paper aims
to help advance the broader use of WAMI by evaluating the
georegistration accuracy and its impact on downstream video
analytics using two benchmark datasets (CLIF 2007, ABQ 2013).
In addition to the current intensified interest in using deep
learning for aerial object recognition and tracking, this paper
motivates the need for further development of more robust and
fast georegistration algorithms for multi-camera WAMI systems.

Index Terms—Wide area motion imagery, aerial video, georeg-
istration, object detection, object tracking

I. INTRODUCTION

There has been an exponential increase in aerial motion
imagery due to advances in airborne sensor technologies, the
increased adoption of manned and unmanned aerial vehicles
(UAVs), and the emergence of new applications including
aerial delivery, environmental monitoring, smart cities, search
and rescue, disaster relief, and precision agriculture. Society
is seeing a growing need for robust aerial imagery and video
analytics capabilities to take full advantage of data fusion and
to meet such application needs [1]. Novel methods, particularly
those using artificial intelligence/machine learning (AI/ML),
coupled with rapid advances in computational hardware (more
powerful, lighter weight, lower energy, lower computing cost)
are revolutionizing image processing, pattern recognition, and
information fusion (e.g,, WAMI fusion applications [2]).

Wide area motion imagery (WAMI) is characterized by
large ground coverage of a few square miles, many objects of
interest, and high-altitude oblique viewing geometries. WAMI
platforms equipped with orientation sensors circle above a
region of interest at a constant altitude, adjusting steadily
the orientation of the camera array pointing to a narrow

area of interest [3] within the region being imaged. Once
georegistered and stabilized, these videos provide a virtual
nadir (i.e., downward) view of the region being monitored
[3] and enable large-scale surveillance and monitoring for
extended periods of time. WAMI exploitation pipelines for
object recognition and multitarget tracking have unique chal-
lenges such as large camera motion, low frame rate, small
object sizes, multi-camera arrays, hundreds to thousands of
moving objects per frame, oblique viewing angles, motion
blur, parallax effects, shadows, etc., in addition to regular
sensor resolution and weather challenges. While significant
advancements have been made in the areas of object detec-
tion [4]–[6], single-object tracking [7]–[9], and multi-object
tracking [10]–[13] thanks largely to benchmarking datasets
and challenges [14]–[20], WAMI video analytics remains to
be challenging. Datasets and more importantly associated
annotations are still limited for WAMI data, which adversely
affects AI/ML guided approaches; particularly the data-driven
deep learning approaches that require adequate data size and
diversity to provide generalized solutions.

WAMI data presents unique challenges for video data
fusion, object detection, and object tracking. Some of these
challenges are illustrated in Figure 1 (a-c) such as small
object sizes, object shape distortions, fast motion due to low
frame rates, partial or full occlusions which can drastically
affect object detection and tracking performance. Processing
of urban scene WAMI videos is further challenging due to
high densities of similar objects (i.e., parking lots full of cars,
busy intersections with hundreds of vehicles and pedestrians),
parallax, and occlusions due to tall buildings.

WAMI Georegistration Challenges: Georegistration and
stabilization of sequential video frames are often the first steps
(e.g., sub-object assessment) in WAMI video analytics, partic-
ularly in moving object detection pipelines. Video registration
is often performed by estimating a frame-to-frame (piece-wise)
perspective transformation (homography) which maps points
of an observed dominant plane in the scene from one image’s
retinal plane to another. While the estimation-based methods
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for obtaining homography transformations may work well for
general cases, it becomes very challenging for WAMI of urban
scenery [3]. Figure 1 (d-f) illustrate registration errors, and
Figure 1 (g-i) show high-fidelity 3D buildings viewed from
different angles causing high levels of parallax motion. In
case of WAMI videos, frame-to-frame homography estimation
methods often fail to smoothly stabilize the whole sequence
of frames and result in fragmentations [21]. That is because
the conventional homography estimation methods only use the
information available from 2D feature correspondences and
ignore (or unable) to utilize the 3D information in underlying
scenes. Thus the large parallax which exists in most of urban
WAMI scenarios distract these methods and cause them to fail
to register the frames over a long sequence.

(a) Seams (b) Small objects (c) Motion blur

(d) CLIF Fr#001 (e) CLIF Fr#101 (f) Misregistration

(g) ABQ Fr#0500 (h) ABQ Fr#1000 (i) GP registered

Fig. 1: Illustration of challenges in WAMI: (a) Seams in
multi-camera stitching from georegistration errors. (b) Small
vehicle objects with drastic appearance change due to relative
viewpoint. (c) Uncorrected motion blur. (d), (e) Two frames
from CLIF 2007. (f) Composite pseudocolor image with
(d) in red and (e) in green channels, showing ground-plane
misalignment. (g), (h) Two frames from ABQ 2013 dataset.
(i) Composite image showing parallax of tall buildings.

In this paper, we discuss the challenges and opportunities
in WAMI image analytics and present benchmarking efforts
to improve the state-of-the-art in WAMI object detection and
tracking. The subsequent parts of this paper are organized as
the following. Section II describes some single and multi-
camera WAMI datasets. Section III presents processing steps
involved in a typical WAMI image analytics pipeline including

georegistration, vehicle detection, vehicle tracking and sample
algorithms associated with these steps. Section IV describes
the evaluation metrics used in this paper. Experimental results
are presented in Section V followed by conclusions.

II. WAMI DATASETS

This section briefly describes some WAMI datasets of
interest. Table I gives a short description of sample pub-
licly available WAMI datasets of interest. This paper focuses
on two of these datasets, a multi-camera Columbus Large
Imagery Format (CLIF) 2007 [27] dataset, and a single-
camera Albuquerque, New Mexico (ABQ) 2013 [29] dataset
(further described below). Video and annotation details for
these datasets are summarized in Table II.

a) Columbus Large Image Format (CLIF) 2007 Dataset:
CLIF 2007 dataset [27] consists of several hours of imagery
collected from a large format electro-optical (EO) platform
by AFRL Sensors Directorate on October 2007 over the Ohio
State University (OSU) campus. The data is collected using a
matrix of six cameras at approximately 2 frames per second.

b) ABQ 2013 Dataset: Aerial urban imagery dataset
collected by TransparentSky [29] using a large format camera
mounted on a gimbal with on-board GPS and IMU, with a
circular data collection flight path 1.5km above ground level
over downtown Albuquerque, NM on September 3, 2013 [28],
[30]. Imaging was done at frame rate of 4Hz and 2.6km
orbit radius. This dataset contains 1071 raw high resolution
images (6600×4400) with nominal ground resolution of 25cm.
Ground-truth for the dataset consists of manually marked
bounding boxes and track IDs for all the moving vehicles (139
vehicle tracks in total) in a 2000 × 2000 region of interest
extracted from 200 consecutive frames.

Prior to benchmarking moving object detection and tracking
algorithms, the datasets and associated annotations need to
undergo a set of processing steps including coordinate trans-
formations and georegistration as described below.

III. ALGORITHMS FOR GEOREGISTRATION, VEHICLE
DETECTION AND TRACKING IN WAMI

Georegistration, object detection, and object tracking are
core processing steps in a WAMI video analytics pipeline.
This section briefly describes sample methods associated with
these steps. As baseline for georegistration and object tracking,
our group’s recent works on analytical homography estimation
in 3D [31], [32] and multi-cue multi-target tracking [10], [11]
are described. Video object detection [33]–[39]. typically relies
on two types of approaches, appearance-based and change or
motion-based. Fusion of appearance, change, and motion cues
have also been used for more robust performance [11], [40],
[41]. In this paper, as baseline for WAMI object detection, we
describe and evaluate one appearance-based approach (YOLO
network [5]), and one fused multi-cue approach extending
YOLO network [5] with our novel change/motion detection
scheme Persistent Flux (PFlux).

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on February 09,2022 at 08:13:19 UTC from IEEE Xplore.  Restrictions apply. 



Name Sensors Scene Ground-truth Targets
UNICORN 2008 [22] Visible (6-cameras)

SAR
Wright-Patterson
Air Force Base

Manual+GPS
Partial (4 million labels)

Moving vehicles, radar reflectors,
calibration targets

WPAFB 2009 [23], [24] Visible (6-cameras)
SAR

Wright-Patterson
Air Force Base

1,537 stitched images; GT: 1/3
training; 1/3 self-test

All moving vehicles for two-
thirds of the frames

MAMI 2013 [25], [26] Aerial (5-color+1-gray)
Ground (4-color) cameras

Wright-Patterson
Air Force Base

Manual - Partial Variety of objects in the scene

CLIF 2007 [27] Visible (6-cameras) Ohio State University campus Manual (3,502,401 labels) All moving vehicles
ABQ 2013 [28] Single camera Albuquerque, NM Downtown Manual All moving vehicles in an ROI

TABLE I: Five WAMI dataset collections and their characteristics.

Dataset ABQ 2013 [29] CLIF 2007 [27]
Frame per second 4 ∼ 2
Raw frame size 6600×4400 pixels 4016×2672 pixels
Registered frame size ≈ 12000× 12000 pixels 31744×29696 pixels
ROI size with GT 2000×2000 pixels Full frame
# Frames with GT 200 6,343
# Object instances 139 3,502,401

TABLE II: Video and annotation details for the ABQ 2013
[29] and CLIF 2007 [27] WAMI datasets.

A. WAMI Georegistration and Stabilization

In order to deal with WAMI georegistration challenges
(described in Section I), we utilize the recent georegistra-
tion works [31], [32] that are able to analytically estimate
the homography matrices in 3D space resulting in robust
and global registrations. ABQ dataset have been stabilized
using MU BA4S [32], [42] georegistration through a direct
analytical homography from camera 3D poses (location and
orientation) as described in [6]. In MU BA4S, the registration
has been carried out by applying a homography transformation
between each image plane and the ground dominant plane of
the scene. Such homography transformations are analytically
obtained using camera parameters, i.e. their rotation matrices
and translation vectors (Table III). The camera 3D poses are
obtained through efficient Bundle Adjustment [42]. For a 3D
point X lying on a dominant ground plane in the scene, π, its
Z component is zero, a homogeneous image point x̃ can be
computed as follows:

x̃ = K(RX + t) (1)

x̃ = K
[
r1 r2 t

]
πx̃ (2)

where r1 and r2 are respectively the first and second columns
of the rotation matrix R between the world coordinate refer-
ence and the corresponding camera, and K represents a 3× 3
matrix of the camera intrinsic parameters. One can consider

W world coordinate system
π dominant ground plane
C1, C2 . . . Cn n airborne cameras
X = [x y z]ᵀ image homogeneous coordinate of a 3D

point from the world reference system W
projected on the image plane of camera C

K calibration matrix (intrinsics)
R rotation matrix
t translation vector from W to C
πx̃ = [x y 1]ᵀ 2D homogeneous coordinates of the 3D

point X on π [43].

TABLE III: Notation used for georegistration.

the term K[r1 r2 t] as a 3× 3 homography transformation
matrix which maps any 2D point from π onto the camera
image plane as x̃ = Hπ→c

πx̃. Likewise, a homogeneous image
point x̃ can be mapped on π as πx̃ = Hc→π x̃, where Hc→π

is the inverse of Hπ→c and is equal to

Hc→π =
[
r1 r2 t

]−1
K−1. (3)

Assuming T =
[
r1 r2 t

]
, f as the focal length in pixel,

and (u, v) as the camera image principal point, (3) after
simplification can be expressed as:

Hc→π =
1

λ

 m11 −m21 [−m11 m21 m31]v
−m12 m22 [ m12 −m22 −m32]v
r13 r23 −rᵀ3v


(4)

where v =
[
u v f

]ᵀ
and λ is a scalar defined as λ = frᵀ3t,

and mij is the minor(i, j) of matrix T. Note that λ in (4)
can be omitted as a homography matrix is up-to-scale.

The introduced mathematical model for image stabilization
works well for stabilization of parts of the image which lie
on the ground dominant plane (on-the-plane). However for
off-the-plane points (any non-flat objects such as buildings,
cars etc.), their homographic projections introduce significant
spurious motions, which can be very distractive for motion
detection algorithms.

B. Appearance-based WAMI Vehicle Detection Using YOLO

Recent advances in AI/ML particularly in deep learning
have revolutionized object detection. Deep learning-based ob-
ject detectors can be divided into two main categories: region
proposal based two-stage detectors (e.g. Faster R-CNN [44],
R-CNN [45]), and single-stage detectors (e.g. YOLO [5],
and SSD [46]), which do not require a separate region pro-
posal process, making them more computationally efficient.
We explored YOLO single-stage detector [5] (specifically
YOLOv3 network) as one of the WAMI baseline object
detectors. YOLO was used since it has: (a) significant speed
advantages over two-stage detectors while maintaining high
detection accuracies, and (b) better generalization capabilities
allowing the network to make reasonably accurate detections
on unseen images visually different from the training data. We
demonstrated appearance based detection performance using
two YOLO networks, one trained using the CLIF dataset [27]
described in Section II and one using the Vehicle Detection
in Aerial Imagery (VEDAI) datase [47]. VEDAI consists of
1200 satellite images collected during Spring 2012, over Utah,
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Checkpoints Recall Precision F-measure

10k 78.03 47.16 58.79

30k 72.13 63.30 67.43

60k 61.91 75.63 68.09

80k 69.82 80.17 74.64

Vehicle samples

Fig. 2: Loss for appearance training phase in YOLOv3 on
CLIF 2007 . The red dots on the curve correspond to (recall,
precision, and f-measure) values listed in the right sub-figure.

USA with an image resolution of 12.5cm× 12.5cm per pixel.
Figure 2 shows training loss versus iterations trained using the
CLIF dataset and a few image patches from the training set.

During both training and inference, the very large WAMI
images are partitioned into 500× 500 non-overlapping image
patches and fed to the network patch by patch. This process
prevents loss of image resolution caused by image resizing, a
critical problem for WAMI datasets with small targets.

C. Tensor-based Motion and Change Detection

Real-world change or motion detection remains a chal-
lenging computer vision task due to confounding factors
such as rapid illumination change, environmental effects,
background/camera motion, shadows, camouflage effects and
degraded environmental conditions (like weather, smoke, dust,
chaff). For detection-based multi-object trackers, it is im-
portant to robustly detect true object motion and structural
changes in the scene as opposed to changes caused by artifacts
such as illumination changes [28]. Furthermore, being able to
consistently detect objects that temporarily stop for a short
period of time will also improve the tracking results. To
address these problems, we have developed PFlux (Persistent
Change with Flux Tensor) system, inspired by our earlier
work [35], [48]–[50]. While these earlier results concentrated
on motion dynamics, the proposed system includes new mod-
ifications and extensions to handle robust detection of longer-
term, persistent changes. PFlux detection relies on visual cues
generated by two tensors, 3D structure tensor and our Flux
tensor [49]. The PFlux tensor is used for motion estimation and
modeling, combining the 3D structure tensor with flux tensor
to model structural (static) and dynamic (moving) edges.

1) 3D Color Structure Tensors: The 3D color structure ten-
sor matrix J(x,W) for a spatio-temporal photometric volume
centered at (x, t) with smoothing and scale filter W (x), uses
first partial derivative optical-flow information of the light-field
projected on the camera focal plane. The trace of the color
structure tensor, J, captures the magnitude of local static and

dynamic (i.e. moving edges) orientation gradients [35], [49],

trace(J(x,W)) =

∫
Ω

||W ∗ ∇I||2dy (5)

2) Color Flux Tensors: The 3D color flux tensor,
JF(x,W), uses the temporal derivatives of the 3D color struc-
ture tensor J, to discriminate between moving and stationary
salient image structures of the scene [35], [49]. The trace of the
color flux tensor matrix, measuring the photometric changes
in the image plane correlated with strong edge motion,

trace(JF(x,W)) =

∫
Ω

|| ∂
∂t
W ∗ ∇I||2dy (6)

is used to directly classify moving and non-moving regions
without an eigenvalue decomposition of JF.

3) PFlux persistent change detection: PFlux detection
module fuses information from 3D color structure and flux
tensors to robustly identify dynamic regions and to differenti-
ate moving edges/corners from static edges/corners that belong
to scene structures. Persistent Flux (PFlux) detection steps:

(i) Build edge, color, and motion models for the scene using
3D color structure and color flux tensors:

ES = trace(J)− α · trace(JF) (7)

(ii) Measure difference between scene model and incoming
images:

DE(x, y, t) =we1 × |ES(x, y, t)− EBG(x, y)|
− we2 ×MF (x, y) (8)

where ES denotes the static edge features for the in-
coming frame; EBG denotes the static edge features for
the learned scene model; MF is the motion evidence
obtained from flux tensor; and we1, we1 are the two
weighting factors.

(iii) Identify persistent change by accumulating change in
time using a sliding window of k frames.

(iv) Report regions of motion and persistent change.
PFlux is implemented in C++ with GPU support and runs at
approximately 45 FPS on high definition videos (1280×1024
pixels), using a laptop with an 8-core Intel Core i7-7700HQ
2.80GHz CPU and an NVIDIA GeForce GTX 1060 GPU.

D. Object Tracking Algorithms

Object tracking [36], [51], [52] is one of the ultimate goals
in WAMI video analytics. In this paper, as baseline WAMI
multi-object tracker, we have tested and evaluated M2Track-
lite a slim version of our multi-cue multi-target tracker,
SCTrack, described in [10], [11]. SCTrack uses multiple
visual cues (position, size, shape, color, texture) and multiple
association steps to robustly link detections in time. Its main
highlights include: (i) multi-cue appearance description; (ii)
an efficient multi-step data association pipeline that maintains
the identities of the tracked objects by resolving association
ambiguities through a sequence of steps that are increasing
in complexity; and (iii) explicit tracklet linking, merge/split
handling, and occlusion handling modules for robust and
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persistent tracking. M2Track-lite uses a part of this pipeline
(excluding tracklet linking and occlusion handling modules)
with spatial proximity for temporal data association.

IV. EVALUATION METRICS

Georegistration Metrics: Georegistration accuracy was as-
sessed using four manually tracked points on the dominant
ground plane for ABQ 2013 (4 Hz, 200 frames) and CLIF
2007 (∼2 Hz, 100 frames) to quantify pixel drift errors.

Detection Metrics: Detection accuracy was evaluated us-
ing object level recall and precision measures. Note that
appearance-based object detectors (i.e. YOLO) tend to over
detect due to identifying both stationary and moving objects
(i.e. parked and moving vehicles).

MOT Metrics: Different evaluation metrics have been
proposed for multi-object tracking [18], [19], [53]. For the
evaluation of WAMI multi-object tracking results, we adopted
Multi-Object Tracking (MOT) challenge evaluation metrics
summarized below and described in [53], [54]. The toolkit
for MOT benchmark evaluation provided in [55] was used
to evaluate the WAMI tracking results. Below is a brief
description of the MOT evaluation metrics used in this work:

1) MOTA: Multiple Object Tracking Accuracy, the most
popular metric, is calculated by combining three types
of errors on a per frame basis, and can be negative:

MOTA = 1−
∑
t (FNt + FPt + IDSt)∑

tGTt
(9)

where t is the frame number, FNt is the number of
undetected (missed) objects (false negatives), FPt is the
number of extra detected objects (false positives), and
GTt is the number of ground-truthed objects in frame t.

2) IDS: Identity switches, counts number of identity mis-
matches by considering the ID mapping in frame t and
t− 1. The IDS metric describes the number of times that
the matched identity of a tracked trajectory changes.

3) FRAG: Fragmentation metric is the number of times that
trajectories are fragmented. Both IDS and FRAG metrics
reflect the accuracy of tracked trajectories.

4) MT: Mostly tracked metric computes percentage of tra-
jectories (with respect to the number of ground-truth
trajectories) tracked accurately for more than 80% of the
trajectory duration.

5) PT: Partially tracked are cases not labeled as MT or ML.
6) ML: Mostly lost metric computes the percentage of

trajectories tracked accurately for less than 20% of the
trajectory duration. MT and ML metrics determine how
much of the trajectories are recovered by the tracker.

V. EXPERIMENTAL BENCHMARKING RESULTS

Georegistration Results: The mean and standard deviation
of the translation errors (∆x,∆y, Euclidean distance) for each
tracked point, averaged over all frames, due to shifts (drift)
arising from georegistration errors are shown in Table IV.
Figure 3 shows the drift with respect to the mean shift (left
scatter plot) and with respect to adjacent frame pairs (right line

plot). It is evident that CLIF has very large georegistration
errors more than one order of magnitude higher than the
subpixel errors in ABQ using our BA4S pose refinement [31],
[32], [56]. Outliers have up to 50 pixel shift error, with respect
to mean position, and over 25 pixel frame-to-frame shift error
in CLIF due to inaccuracies in multi-camera georegistration.
The former reflects georegistration accuracy, while the latter is
indicative of difficulties during data association for tracking.

Dataset Point A Point B Point C Point D Mean StdDev
ABQ-BA4S 0.5620 0.5095 0.4463 0.6607 0.5446 0.3599
CLIF-Conv 6.3970 4.5907 6.7544 6.3670 6.0273 5.0900

TABLE IV: Mean drift error in pixels for four points tracked in
each WAMI sequence for 200 and 100 frames respectively in
ABQ and CLIF, after georegistration using different methods.

Fig. 3: Drift in pixels for one manually tracked point in each
WAMI sequence across 200 (ABQ) and 100 (CLIF) frames.

Detection Results: Figure 4 shows motion detection results
from Flux [49], [50] and PFlux on sample frames from two
WAMI datasets ABQ 2013 single-camera WAMI, and AFRL
CLIF-2007 multi-camera WAMI. For ABQ there are motion
responses from both moving objects and building structures
due to motion parallax. This makes it difficult to use only
the estimated motion areas to aid in detecting and tracking
vehicles, despite the fact that the ground plane in the video
is well stabilized. By using 3D building structure cues [6]
the motion responses due to building motion parallax can be
accurately filtered out. Image transformation and mosaicing
is another challenge in large scale WAMI datasets. Inaccurate
georegistration can result in both unstable ground-plane mo-
tion and motion from building parallax which makes filtering
buildings more difficult. The detection problem is further com-
pounded by visible seams when mosaicing multiple cameras
in WAMI frames, which can lead to motion detection failures,
as shown in Figure 4 AFRL CLIF. While both Flux and PFlux
methods result in false detections, PFlux can differentiate
between changes due to mis-registration (red channel) versus
parallax and true object motion (blue channel), to reduce the
number of false detections. Here we use PFlux primarily to
visualize the influence of georegistration errors.

MOT Results: Table V shows M2Track-Lite multi-object
tracker performance on two sample WAMI datasets, single-
camera ABQ 2013 [29] dataset with fairly accurate georegis-
tration, and multi-camera AFRL CLIF 2007 [27] dataset with
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Fig. 4: Motion detection results for sample images from two WAMI datasets: Row 1 is ABQ 2013 and Row 2 is AFRL CLIF
2007 dataset. Col 1 shows the original images. Col 2 shows motion detection results using Flux (blue channel). Col 3 is Flux
response (blue channel) and PFlux (red channel) showing persistent change from motion, and jitter or georegistration errors.

larger georegistration errors (Table IV, Figure 3) and visi-
ble inter-camera seams. Detection and tracking performance
evaluations are also presented for a 5, 000× 3, 000 region of
interest (ROI) from the AFRL CLIF 2007 dataset positioned
at (x = 8750, y = 11220). This ROI was selected because
the region includes multiple busy intersections and persistently
stays in the field of view of the cameras resulting in longer
ground-truth trajectories. Tracking results are presented for
three types of detections corresponding to manually generated
ground-truth (GT ) detections, appearance based deep network
detections (YOLO [57]), and multi-cue detections based on
decision fusion of appearance-based and motion/change based
detections described in III-C (YOLO+Flux [6]).

WAMI multi-object tracking performance heavily depends
on object detection and georegistration accuracy. Figure 5
illustrates sample detection results (YOLO and YOLO+Flux)
and multi-object tracking results using ground-truth detections.
Fusion of multiple cues provides better detections leading
to improved tracking; using YOLO only versus YOLO+Flux
detections MOTA improves from -310 to 73 on ABQ (see
Table V). The impact of georegistration accuracy on multi-
object detection and tracking was evaluated using CLIF 2007.
When large georegistration errors are present, average ∼6
pixels in CLIF, accurate estimation of motion and change cues
is adversely impacted, decreasing MOTA score from 71.9 for
YOLO only, to 68.3 for YOLO+Flux in the cropped CLIF
2007 and from 40.3 to 30.3 for the Full CLIF 2007 dataset
(see Table V). These results demonstrate that early upstream
processing stages of WAMI video analytics pipelines, espe-
cially multi-camera georegistration accuracy, are crucial for

accurate performance in small target detection and tracking.

VI. CONCLUSIONS

Wide area motion imagery (WAMI) enables mapping and
monitoring of large geospatial areas for extended periods of
time driving the expanded use of single and multi-platform
aerial imagery. While we have seen remarkable advances
in video analytics for ground or low-altitude aerial videos,
automated or semi-automated analysis of WAMI videos have
been limited due to data complexities, lack of labeled training
videos, and large data processing requirements. In this paper,
we presented an evaluation of how georegistration accuracy
effects vehicle detection and multi-object tracking using two
WAMI datasets (CLIF 2007 and ABQ 2013) providing a
baseline set of results for developing improved techniques to
detect and track small objects accurately in aerial imagery.
The sensitivity of object recognition and tracking algorithms
to georegistration accuracy motivates the further development
of more robust and faster georegistration algorithms for multi-
platform multi-camera systems that can dynamically adapt to
environmental and optical changes. This will facilitate advanc-
ing the state-of-the-art in WAMI video analytics, particularly
multi-object detection and tracking of small objects.
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(a) Original ABQ 2013 (b) YOLO vehicle detections (c) Fused YOLO+Flux detections (d) M2Track-Lite tracks

(e) Original AFRL CLIF 2007 with ROI (f) YOLO vehicle detections in cropped region (g) M2Track-Lite tracks in cropped region

Fig. 5: Sample detection and tracking results for ABQ 2013 [29] and AFRL CLIF 2007 [27] WAMI showing improvement in
detection accuracy when appearance (YOLO) and motion (Flux) are combined. M2Track-Lite tracks using GT detections.

Datasets Georegistration Detector Alg M2Track Lite Tracker
Metrics MOTA↑ IDSW↓ FRAG↓ MT↑ PT↑ ML↓ GT-ID #Detections
ABQ BA4S GT 99.70 24 0 139 0 0 139 8,323
ABQ BA4S YOLO [57] -310.0 53 0 68 11 43 139 35,027
ABQ BA4S YOLO+Flux [6] 73.80 248 8 139 0 0 139 10,066
Full CLIF Conventional GT 90.42 3,559 676 885 1 0 886 12,413
Full CLIF Conventional YOLO [57] 40.30 184 46 571 0 0 571 17,574
Full CLIF Conventional YOLO+Flux [6] 30.30 1,058 45 551 15 5 571 16,338
Cropped CLIF Conventional GT 99.30 52 19 129 0 0 129 7,544
Cropped CLIF Conventional YOLO [57] 71.90 1054 281 100 25 4 129 6,550
Cropped CLIF Conventional YOLO+Flux [6] 68.30 622 264 73 48 8 129 5,778

TABLE V: Tracking performance using ground-truth vehicle detections, YOLO and YOLO+Flux object detection in WAMI
datasets ABQ 2013, AFRL CLIF 2007, and cropped 5, 000 × 3, 000 pixel region of interest (ROI) from AFRL CLIF 2007
(see Figure 5(e)). M2Track-Lite multi-object tracker was used without tracklet linking. Evaluation metrics include Multi-object
Tracking Accuracy (MOTA), ID switches, Fragmentation, Mostly Tracked, Partially Tracked, Mostly Lost, and GT-ID (Number
of Tracks) as described in HOTA [54]. ABQ 4 Hz, 200 frames; CLIF ∼2 Hz, 100 frames.
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