
Future Generation Computer Systems 125 (2021) 247–262

K
a

b

c

a
e
r
f
r
s

(
o
w
p

h
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

DroneCOCoNet: Learning-based edge computation offloading and
control networking for drone video analytics
Chengyi Qu a, Prasad Calyam a,∗, Jeromy Yu b, Aditya Vandanapu c, Osunkoya Opeoluwa a,
e Gao a, Songjie Wang a, Raymond Chastain a, Kannappan Palaniappan a

University of Missouri - Columbia, MO, 65201, USA
Purdue University, IN, 47907, USA
University of Illinois at Chicago, IL, 60607, USA

a r t i c l e i n f o

Article history:
Received 13 February 2020
Received in revised form 10 April 2021
Accepted 18 June 2021
Available online 29 June 2021

Keywords:
Edge/fog computation offloading
Drone video analytics
Mobile edge computing
Learning-based scheme
Data processing in fog computing

a b s t r a c t

Multi-Unmanned Aerial Vehicle (UAV) systems with high-resolution cameras have been found useful
for operations such as smart city and disaster management. These systems feature Flying Ad-Hoc
Networks (FANETs) that connect the computation edge with UAVs and a Ground Control Station
(GCS) through air-to-ground wireless network links. Leveraging the edge/fog computation resources
effectively with energy-latency-awareness, and handling intermittent failures of FANETs are the
major challenges in supporting video processing applications. In this paper, we propose a novel
‘‘DroneCOCoNet’’ framework for drone video analytics that coordinates intelligent processing of large
video datasets using edge computation offloading and performs network protocol selection based on
resource-awareness. We present two edge computation offloading approaches, i.e., heuristic-based and
reinforcement learning-based approaches. These approaches provide intelligent task sharing and co-
ordination for dynamic offloading decision-making among UAVs. Our scheme handles the problem
of computation offloading tasks in two separate ways: (i) heuristic decision-making process, and (ii)
Markov decision process; wherein we aim to minimize the total computation costs as well as latency
in the edge/fog resources while minimizing video processing times to meet application requirements.
Our experimental results show that our heuristic-based offloading decision-making scheme enables
lower scheduling time and energy consumption for low drone-to-ground server ratios. In comparison,
our dynamic reinforcement learning-based decision-making approach increases the accuracy and
saves overall time periodically. Notably, these results also hold in various other multi-UAV scenarios
involving largely different numbers of detected objects in e.g., smart farming, transportation traffic
flow monitoring and disaster response.

© 2021 Published by Elsevier B.V.
1. Introduction

In the last few decades, Unmanned Aerial Vehicles (UAVs),
lso known as drones, have been extensively used in differ-
nt scenarios in urban and rural area control such as disaster
esponse, surveillance of smart city, crime fighting and smart
arming. Most commercially used drones are equipped with high-
esolution cameras that are used to visualize and monitor target
tatus, e.g., object recognition, counting and tracking purposes.

∗ Corresponding author.
E-mail addresses: cqy78@mail.missouri.edu (C. Qu), calyamp@missouri.edu

P. Calyam), yu618@purdue.edu (J. Yu), avanda7@uic.edu (A. Vandanapu),
soykp@mail.missouri.edu (O. Opeoluwa), kegao@mail.missouri.edu (K. Gao),
angso@missouri.edu (S. Wang), rlc5m8@mail.missouri.edu (R. Chastain),
al@missouri.edu (K. Palaniappan).
ttps://doi.org/10.1016/j.future.2021.06.040
167-739X/© 2021 Published by Elsevier B.V.
State-of-the-art video analytics applications are increasingly
using drone video data collection/processing that requires high-
performance computing resources and real-time network com-
munications. The problems of insufficient computing resources
and network bandwidth at the edge can be addressed by using
computation offloading to a Ground Control Station (GCS). As
shown in Fig. 1, we consider an experimental setup comprising
of a fleet of drones connected via the Flying Ad hoc Networks
(FANETs) [1]. A multi-UAV system can operate in a centralized or
decentralized manner. In a decentralized system, the UAVs need
to explicitly cooperate at different levels to exchange information,
share tasks and make collective decisions in order to achieve
the system goals under limited edge/fog resources. Under this
setting, even if the connection from one of the drones to the
GCS is interrupted, inter-drone communication is still possible,

as outlined in [2].

https://doi.org/10.1016/j.future.2021.06.040
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2021.06.040&domain=pdf
mailto:cqy78@mail.missouri.edu
mailto:calyamp@missouri.edu
mailto:yu618@purdue.edu
mailto:avanda7@uic.edu
mailto:osoykp@mail.missouri.edu
mailto:kegao@mail.missouri.edu
mailto:wangso@missouri.edu
mailto:rlc5m8@mail.missouri.edu
mailto:pal@missouri.edu
https://doi.org/10.1016/j.future.2021.06.040

C. Qu, P. Calyam, J. Yu et al. Future Generation Computer Systems 125 (2021) 247–262

d
e
r
c
G
i
d
e
t
a
S
s
f
w
f
c
t
o

c
C
l
g
o
t
a
o
b
a
a
g
o
a
n

p
c
t
K
c
e
w
t
l
s
M
p
h
w
o
a
l

Fig. 1. Search and Intelligence application scenario using multiple drones with diverse video cameras and sensing capabilities.
However, edge computation offloading cannot always be used
ue to the dynamic nature of wireless channels and the en-
rgy consumption constraints on the drones for processing high-
esolution images. In edge networks, a variety of environmental
onditions may affect the video streaming from drones to the
CS. This can in turn jeopardize the performance of video analyt-
cs with increased end-to-end delay, frame blurring, stalling and
istortion rates. Network performance orchestration and drone-
dge computation offloading strategies are always considered
ogether to make sure the video analytics application performs in
stable and integrated manner to meet application requirements.
election of a suitable network protocol is a key feature for re-
ource orchestration along with an appropriate location selection
or the computation tasks offloading in a multi-drone-edge net-
ork. However, based on our literature survey and observations

rom [3] and [4], there is a clear lack of mechanisms to effi-
iently coordinate the networking protocols selection in conjunc-
ion with drone control orchestration and edge/fog computation
ffloading during drone video analytics.
In this paper, we present a novel learning-based dynamic

omputation offloading, control networking scheme viz., ‘‘DroneCO-
oNet’’, which accomplishes: (a) intelligent reinforcement
earning-based processing in edge computation offloading strate-
ies, and (b) resource-aware network protocol selections based
n application requirements. The intelligent processing considers
he trade-offs in processing time vs. tracking/accuracy rate using
Function Centric Computing (FCC) architecture [5]. With the use
f the FCC architecture, a given drone video analytics pipeline can
e decomposed into separate functions for distributed processing
t the edge GCS or on-board the drones using a suitable resource
llocation scheme. The resource-aware scheme selection for a
iven drone video analytics application setting is primarily based
n a set of options involving a combination of video compression
nd video streaming protocols. We summarize the two major
ovel contributions in our DroneCOCoNet work as follows:
CO: Learning-based Edge Computation Offloading. We im-

lemented a learning-based offloading scheduler based on data
ollected in the field to predict computational energy consump-
ion on the drones. Supervised learning approaches, such as
ernel-Ridge regression, support vector machine, Gaussian pro-
ess regression, and random forest regression, are used to predict
nergy consumption, processing time and transmission latency
ithin a multi-UAV system. We measure the performance of
hese approaches on predicting the energy consumption and
atency in real multi-UAV environments, and test various FANET
etups with three mobility models, i.e., random way point, Gauss–
arkov and Mission-plan based model [6]. In addition to su-
ervised learning, we design a dynamic solution to determine
ow and when drones should offload tasks to improve accuracy
hile minimizing the cost in cloud communication. We formulate
ffloading decisions within a set of sequential decision making
lgorithms, and propose a novel solution using reinforcement
earning (RL).
248
CoNet : Control Networking Decision Making. To solve the
initial problems in providing high/optimal system performance
in various wireless video streaming scenarios, we propose a
resource-aware protocol selection algorithm, which chooses the
most suitable protocol combination at the beginning of drone
video streaming and analytics processes. We investigate the fea-
tures of various candidate protocol combinations on video data
transmission and compression codec strategies, given details
on how users may use the algorithm to make decisions when
setting up their drone data processing applications. To facilitate
the transferring of data for parallel execution, we implement a
novel client/server application named QUICer. QUICer operates
using HTTP/3 over the popular QUIC transport protocol [7], which
allows faster data transfer and is used in many emerging web
applications. QUICer consists of servers and clients, both of which
support multiple workers.

The rest of the paper is organized as follows: In Section 2, we
discuss related works. In Section 3, we give an overview of the
DroneCOCoNet system. Section 4 presents CO on using supervised
learning for heuristic computation offloading decisions and its ex-
tension that involves reinforcement learning. Section 5 introduce
the CoNet contributions that include QUICer and its integration
in an advanced drone video analytics application. Section 6 dis-
cusses the performance evaluation of the DroneCoCONet system.
Section 7 concludes the paper.

2. Related work

FANET Management. Unmanned Aerial Vehicle Networks [8] are
autonomous networks formed by self-organizing aerial vehicles
like drones or other aircraft. The UAV network is known as FANET
(Flying Ad-Hoc Networks), and is a subset of the MANET (Mobile
Ad-Hoc Network) [6]. Research on these networks has steadily
increased over the recent years, especially in next-generation
civil applications like consumer product delivery, autonomous
and mobile environmental monitoring, search, rescue, and disas-
ter management. FANETs support distributed wireless networks,
which solve the problem of communication range restriction by
allowing communication among the UAVs without the need for
an infrastructure [1]. There is no doubt that with the proper
collaboration and coordination of multiple UAVS in the FANET,
the system would far exceed the capacity and capabilities of
single UAV systems. Although there are several advantages of us-
ing FANETs over the single UAV-to-Ground Control Station (GCS)
system architectures, several challenges emerge when imple-
menting FANETs. Notable challenges particularly rise in systems
with different requirements, such as total processing time, energy
consumption, efficient communication and coordination between
UAVs–UAVs and UAVs–GCSs based on mobility [9]. However,
the challenges that accompany many emerging UAV applications
cannot be solved alone by static optimization models, especially if

C. Qu, P. Calyam, J. Yu et al. Future Generation Computer Systems 125 (2021) 247–262

t
p
t
a
w
d

E
t
t
w
c
p
t
v
a
e
t
o
i
e
f
n
a
c
W
c
c
I
s
c
n
f
t
d
o
c

a
t
c
s
t
s
d
m
t
r
o
o
a
t
o
p
c
a
n
J
c
o
i
d
p
m
p
m
m

hey are applied in complex and adverse environments [10]. Our
roposed DroneCOCoNet overcomes these challenges by selecting
he best suitable schemes for computation and communication
mong various UAV networks, allowing saving on network band-
idth, energy consumption, and edge/fog computation resources
uring the execution.

dge Computation Offloading in Multi-UAV Systems. Compu-
ation Offloading is the act of transferring computationally in-
ensive tasks or functions to other platforms. In our previous
ork, we implemented Function-Centric Computing (FCC) and
omputation offloading policies in drone video analytics. The FCC
aradigm involves decomposing applications into microservices
hat can be individually deployed onto edge resources [5]. Ad-
antages of this architecture are that specific functions in a larger
pplication that are computation-intensive and would cause high
nergy consumption can be offloaded. In our proposed system,
he drones have the option to transfer tasks to another drone
r the GCS. Low power devices trying to execute computation-
ntensive tasks will often deplete energy faster than what is
xpected by the user. Energy-awareness is especially important
or drones since the development of battery capacity has stag-
ated, and we want to have the drones flying in the air for as long
s possible for data collection [11]. Computation offloading over-
omes such limitations of low-power devices such as drones [12].
ith computation offloading, energy consumption of the drones

an be minimized as shown in our prior work [13], without
ompromising the user experience quality at the application level.
n our proposed scheme, we leverage this framework in the
cheduling of the tasks in the multi-drone scenarios that we have
onsidered for use of function-centric computing. Specifically, the
ovelty of our approach can be seen in the method used for the
unctions to be offloaded from the drones to the edge as a way
o minimize energy consumption of the drones as long as the
elay constraint is met. In addition, our method allows drones to
ffload functions to other drones to evenly distribute the energy
onsumption.
It is important to figure out how and when drones as well

s other IoT devices should offload sensing tasks, especially if
hey are uncertain, to improve accuracy while minimizing the
ost in cloud communication [4]. Many computation offloading
trategies have been proposed for multi-access edge computa-
ion in terms of network packets transmission and system re-
ponsiveness through dynamic task partitioning between cloud
ata centers and edge devices [14]. In [15], the authors for-
ulate offloading as a sequential decision making problem in

he context of IoT devices, and propose a solution using deep
einforcement learning. Algorithms for deployment optimization
f multi-drones in a FANET were developed in [16] by focusing
n the amount and location of the drones. Assignment of tasks
mong local or edge devices while minimizing energy consump-
ion and latency is also a trending problem in joint computation
ffloading and resource allocation. Authors in [11] formulate the
roblem as a new online Reinforcement Learning problem while
onsidering both delay and device computation constraints. They
lso proposed a new strategy based on a Q-Learning algorithm,
amed QL-Joint Task Assignment and Resource Allocation (QL-
TAR) as a solution. This work is particularly relevant because we
onsider it as a baseline approach in the performance comparison
f our heuristic solution. Besides these two approaches, authors
n [17] also used various reinforcement learning approaches on
ynamic decision making. Authors in [18] summarize and com-
are advantages/disadvantages of reinforcement learning-based
echanisms, supervised learning-based mechanisms, and unsu-
ervised learning-based mechanisms in computation offloading
ethods. They considered the essential features such as perfor-
ance metrics, case studies, utilized techniques, and evaluation
249
tools in their comparison studies. Other solution strategies can
be seen in [19], where the authors use a game theory approach
to deal with delay sensitive applications in MEC. The novelty of
our work in comparison to these prior works is in the use of
reinforcement learning for making decisions with various reward
conditions. We query the edge cloud server status during decision
making for improving analytics accuracy, while also handling the
constraints such as latency and power. We also test our proposed
reinforcement learning strategy in real experiment testbeds.

Networking Protocol Selection in FANETs. The recognition of
imagery taken from over-the-head cameras poses many challeng-
ing tasks compared with imagery taken by a fixed ground level
camera because of low or high resolution imagery patterns [20,
21]. Herein, a major challenging task involves handling the large
intra-class variation in activities including variations in resolution
scale, target (e.g., visual appearance, speed of motion) and envi-
ronment (e.g., lighting condition, occlusion) [22]. The meaningful
structures in a video are extracted through unsupervised learning
of temporal clusters and are associated with the metadata. A
flexible dual TCP–UDP streaming protocol (FDSP) is used for high-
quality video streaming [23,24]. This FDSP approach results in
lower packet loss compared to UDP-based streaming. The FDSP
is particularly relevant to our work because it features a flexi-
ble dual TCP–UDP streaming protocol that requires application
awareness of the critical video streaming content. The application
awareness is used during the streaming for the TCP protocol
configuration. However, FDSP may not fully satisfy our require-
ments in the video analytics procedure, which is the reason we
do not use FDSP as a comparison method. (See Section 6.4 for
detail.) Similarly, we also consider application awareness in the
hierarchical FANET environment for a different case i.e., to select
the QUICer protocol configuration.

The performance of QUIC vs. TCP for achieving a better per-
formance in video streaming was studied in [7]. Unlike the con-
clusions in [7], we have not found a case for limited bitrate
conditions during our whole flight experiments. Specifically, we
have not faced the situation where QUIC performance drops
below the necessary frames per second (FPS) for the video an-
alytics pipeline we use in our application. In our experiments,
we assume that the GCS can handle the distance of drone flight
paths that do not significantly degrade signal conditions and can
also address low battery situations, and hence we are able to
avoid drone connectivity issues that involve low bitrate transmis-
sion cases. Our approach involves transport protocol experiments
involving changes in video resolution in order to avoid video
impairments. In our proposed scheme, we specifically use HTTP/3
and QUIC protocols to generate a video transport pipeline and
corresponding network monitoring to help with development
of machine learning based prediction methods. We also use a
reinforcement learning approach for dynamic decision-making
to enhance the performance in the context of network speed
prediction.

Despite several advances in recent years, FANET networks still
have limitations that need to be overcome for their successful
operation and wide adoption. The main limitation is energy con-
sumption [25–27] because it limits the flight time of the drones.
Other limitations include the speed of connection and the range
of the signal transmission due to the mobility of drones, and their
limited storage capacity.

3. DroneCOCoNet framework

In this section, we first describe the vision of the DroneCO-
CoNet framework and discuss the key challenges that we address
in a system deployment. Following this, we list the various mod-
ules in our system and explain the interactions among them,

C. Qu, P. Calyam, J. Yu et al. Future Generation Computer Systems 125 (2021) 247–262

a
w
D
m

3

C
v
d
F
i
c
i
c
w
w
o
a
i
d
m
t
(
t
(
T
t
n
n
o
t
a
a

3

w
w
s
d
s
j
l
v
t
f
d
n
l
e
m
o
s

3

s
a
e
i
b
m

nd present various use case scenarios of our system. Lastly,
e discuss practical considerations for the deployment of the
roneCOCoNet in a multi-drone edge/fog computing environ-
ent.

.1. Framework overview for drone video analytics

Fig. 2 illustrates a detailed view to integrate our DroneCO-
oNet system in a multi-drone-edge-server scenario, which in-
olves communication and computation offloading between
rone and the GCS connected to the edge server. A hierarchical
ANET with both low capability search drones and high capability
ntelligence gathering drones is considered in our multi-drone
ommunication setup. To make sure the drone video analyt-
cs application performs in a stable and reliable manner, we
onsidered both the problems of network protocol selection as
ell as the drone-edge computation task offloading. In the other
ords, our overall methodology aims to solve two salient aspects
f system resource orchestration: computation offloading (CO),
nd control networking (CoNet). Three main logical modules are
ncluded in our hierarchical FANET system: (i) the application
ata collection module, (ii) the resource-aware protocol selection
odule, and (iii) the learning-based offloading module. The first

wo modules represent the control networking part of the system
described briefly in Section 3.2 and detailed in Section 5), and
he last module represents the edge computation offloading part
introduced first in Section 3.3 and detailed later in Section 4).
he control networking part provides an environment for data
ransfers corresponding to various multi-drone-edge-server sce-
arios. After setting up the essential hardware, software, and
etwork connections, we use a novel learning-based computation
ffloading algorithm module that we developed in this work
o enhance the resource usage and system performance, such
s e.g., energy consumption, analytics time and data processing
ccuracy.

.2. Computation offloading (CO)

To enhance system performance in the drone application,
e use edge computation offloading to release the computation
orkload on drone and speed-up the video analytics. In real
cenarios, in the case of uncertain wireless environments, it is
ifficult to predict the network conditions to give a precise deci-
ion on ‘where’ and ‘when’ to offload the computation-intensive
obs. However, using a machine learning approach, we could
earn from previous flight traces with the network settings and
ideo transmission properties to label the status and categorize
he conditions. Moreover, a static condition may not be ideal
or the entire flight due to the complex changes occurring in a
ynamic field environment. Thus, we prefer to use a more dy-
amic approach for making decisions i.e., we use a reinforcement
earning approach for learning from the dynamically changing
nvironments by issuing certain rewards. In addition, integrating
ulti-thread capability could also enhance the processing speed
f large datasets by running multiple independent tasks at the
ame time.

.3. Control networking (CoNet)

Considering various use cases of a multi-drone system, we
elect a few scenarios for using video-camera embedded drones
s intermediate or front-end devices in applications such as
.g., traffic management, disaster management, and smart farm-
ng. In most of these scenarios, multi-drones cooperate together
y recording and processing videos locally. However, drones
ostly have low computational resources on-board to avoid large
250
Table 1
Collected features from our drone experiments dataset.
Transmission dataset Processing dataset

Analytics layer attributes:

Video resolution (width x height) Video resolution (width x height)

System layer attributes:

Wireless data rate (Mb/s) CPU cloud speed (MHz)
Number of spatial streams RAM (GB)
Code rate (Mb/s) Free memory (MB)
Number of bits per symbol Hard drive capacity (MB)

Mobility models:

Gauss–Markov, Random way point, Mission plan based

Result parameters:

Transmission energy (J) Processing energy (J)

payload that limits the flight time. To cope with this limita-
tion, they offload video data to the edge computing resources
through the GCS. There can be several options for video trans-
mission through the wireless channel. We could choose from
different transport layer protocols and application layer protocols
to enhance the speed and accuracy in video transmission. For
instance in live streaming, we can choose from UDP, TCP, or
QUIC as a transport layer protocol, and from RTP, HTTP/1, HTTP/2
and HTTP/3 as the application layer protocol. In addition, due
to the limitation on the bandwidth of the wireless channel at
the network edge, a compression of the drone videos is highly
desirable before data transmissions. Although a more advanced
video encoding/decoding algorithm could provide higher quality
and/or save storage space, such an algorithm could be a bottle-
neck for supporting time-sensitive applications due to its longer
encoding/decoding time. Thus, a control scheme to select network
protocols and configure video data compression algorithms is
essential for setting up environment variables before running the
multi-drone-edge-server system applications.

4. Computation offloading in drone video analytics

In this section, we discuss computation offloading by us-
ing machine learning based prediction and task scheduling. We
present two learning based approaches, i.e., (i) the supervised
learning based algorithm, and (ii) the reinforcement learning
based algorithm and detail the implementation of these ap-
proaches.

4.1. Supervised learning based job scheduling

4.1.1. Problem background
We designed experiments (see Section 6) to acquire flight

traces with various network setting and video transmission prop-
erties. Table 1 shows the features that were collected during our
experiments. These features are divided into three categories: (i)
analytics layer attributes, (ii) system layer attributes and (iii) mo-
bility models. In addition, we obtained the transmission energy
results based on the calculations given in [11] and calculated the
consumed energy during processing the dataset using the given
hardware settings.

With the collected datasets, we used machine learning to
predict the time needed to complete each of the jobs. The
reason why we compare the prediction time to complete each
job is because we found that: (i) the ML models provide at least
95% accuracy on prediction given a time series of measurements
and thus can be used in computation offloading decisions, and
(ii) we run an on-line learning procedure on a given multi-
drone scenario to ensure that the finish time (that is one of the

C. Qu, P. Calyam, J. Yu et al. Future Generation Computer Systems 125 (2021) 247–262

d
o
f
h
r
c
I
a
t
d

Fig. 2. DroneCOCoNet system architecture showing the integration of data collection and processing through integration of two salient aspects of system resource
orchestration involving a learning-based computation offloading and network protocol selection..
Table 2
Machine Learning model average training time (± RMSE) based on
transmission and processing dataset.
Model type Transmission (time) Processing (time)

KRR 0.120 ± 0.00362 0.004 ± 0.00272
SVR–RBF 0.099 ± 0.01620 0.068 ± 0.00252
GPR 2.170 ± 0.00100 1.962 ± 0.00000
RFR 0.205 ± 0.05400 0.156 ± 0.05400

most important features) is minimum to not disrupt the drone
flight tasks. Four machine learning models from the Sci-Kit Learn
Tool [28] were used: (i) Kernel-Ridge Regression (KRR), (ii) SVR–
RBF (Radial Basis Function kernel SVM), (iii) Gaussian-Process
Regression (GPR), and (iv) Random Forest Regression (RFR). The
choice of selection of the supervised ML tools is motivated by the
following reasons: First, in real-world scenarios, due to the un-
certain wireless environment conditions, it is difficult to predict
the network performance to give a precise decision on ‘where’
and ‘when’ to offload the computation-intensive jobs. However,
using a machine learning approach (i.e., supervised learning),
we could learn from previous flight traces with the network
settings and video transmission properties to label the status and
categorize the conditions. Second, the different machine learning
methods are chosen based on the regression methods in machine
learning approaches. We have chosen to focus on regression since
most of the previous works (e.g., [4,18]) involve measuring the
performance of models using metrics such as the transmission
time or processing time or the energy consumption. In these
machine learning models, we were primarily concerned about
the training time and RMSE (Root Mean Square Error) metrics,
as shown in Table 2. For transmission time, we found that the
machine learning model that had the shortest training time was
the SVR–RBF model. For the processing time, the best perfor-
mance was seen in the Kernel-Ridge Regression. Leveraging the
predicted information from the machine learning models, we can
obtain information on energy consumption by each job, network
condition on each time-step, and use such information to allocate
the resources from drones and edge servers.

Regarding to the model training, validation and testing proce-
ure, we assume above that all of these activities will happen only
n the GCS. The model training as part of the computation of-
loading algorithms is occurring in two different solutions: (i) the
euristic based on the machine learning results, and (ii) on-time
einforcement learning algorithm. In addition, we do consider the
ase where the UAV does not have enough battery in prediction.
n such a case, we assume that the GCS will detect such a situation
nd not assign any computation offloading tasks for that UAV. In
he event of a condition when UAV runs out of battery power

uring the flight, we assume that the UAV will be made to ground

251
itself to be recharged before it is added back to the hierarchical
FANET setup.

In the following sub-section, we introduce a heuristic algo-
rithm, which uses a job-shop scheduling method based on our
prior work [13] to allocate computation resources from drones
and edge servers.

4.1.2. Heuristic job scheduling algorithm
The results of supervised learning were used to predict the

network conditions, with the aim to allocate the resources from
drones and servers. With regards to ‘where’ to execute the jobs,
we use this scheduling algorithm to allocate the jobs and mini-
mize the final energy consumption. For this purpose, we designed
a heuristic solution, with which we always choose the best place
(i.e., ‘where’) to execute the job, and allows parallel execution
as soon as there is no conflicts between any parallel jobs. After
the heuristic algorithm, each job gets the location and order of
execution. With regards to ‘when’ to execute the job, it is the
same as the job-shop scheduling problem. There are many ways
to solve the job-shop scheduling problem. In this work, we used
existing tools [29] to calculate the scheduling sequence and the
final execution time, as shown in Algorithm 1.

In this heuristic approach, we introduce a threshold for help-
ing the system determine where to offload the jobs based on the
remaining ideal flight time and the remaining battery life of the
drone fleets. This algorithm’s result is used to compare among
the Local Only, Random, and Offload Only approaches; detailed
evaluation results and observations are provided in Section 6.2.
The basic logic of the algorithm is: when the total execution
energy reaches the threshold value, it is not necessary to run
the job-shop scheduling algorithm again in the next period. In
this case, we choose a more advanced approach i.e., the learning
based approach as detailed in Section 4.2.2. The algorithm used in
the heuristic decision making approach with supervised learning
based computation offloading is detailed in Algorithm 1.

4.2. Reinforcement learning based job scheduling

4.2.1. Problem background
Since the heuristic approach is fixed during the entire flight of

drones, it does not perform better than real-time decision making
algorithms. Here we provide a problem statement to abstract the
computation offloading problem as a Markov-decision process.
The optimization problem is defined as: find the optimal offloading
control approach that maximizes expected cumulative rewards R.
Since in last subsection we already considered energy, which
influences computation offloading, the Reward function for this
subsection will only include accuracy and latency.

To overcome the disadvantage of the heuristic approach, we
define the edge computation offloading problem as a finite-time

C. Qu, P. Calyam, J. Yu et al. Future Generation Computer Systems 125 (2021) 247–262

b

Algorithm 1: Heuristic Algorithm with Supervised Learning
ased Computation Offloading

Input: [jobSet]:= total set of jobs and energy properties on a multi-drone
analytics application; [envSet]:= set of all essential properties on
drone system (battery, camera, and etc); TE:= predicted transmission
energy of a job; PE:= predicted processing energy of a job

Output: [COlocations]:= a set of locations on which job running on where,
[totalEnergy]:= total energy spend on an application

1 Function Main([jobSet],[envSet]):
2 while remainTime(envSet.battery)! = 0 do
3 foreach job ∈ [jobSet] do
4 COlocations.job = Heuristic(job,[envSet])
5 remainTime(envSet.battery)−−
6 end
7 end
8 [totalEnergy] == JopShopAlgorithm([jobSet], [COlocations])
9 return

10 Function Heuristic(job,[envSet]):
11 if job.energy <

min(remainEnergy(envSet.battery), remainEnergy(envSet.flightTime)) then
12 if job.TE >= job.PE then
13 COlocations.job.position == GCS
14 end
15 else
16 COlocations.job.position == Drone
17 end
18 end
19 else
20 COlocations.job.position == Drone
21 end
22 return COlocations.job

Markov decision process (MDP) with regards to the total drone
flight process.

Moffload = (Soffload, Aoffload, Poffload, Roffload, T) (1)

whereMoffload is the state space, Aoffload is the action space, Poffload is
the probability function that indicates the probability that action
a in state s at time t will lead to state s′ at time t + 1. Roffload is a
reward function, and T is the problem horizon.

We consider the offloading decision problem to choose
amongst options based on prediction to use for downstream tasks
at time t . The offloading system action can either choose to use
past predictions to avoid performing computation on the new
input, or incur the computation or network cost to use either the
on-device computation model or the cloud computation model.
Three discrete actions of the offloading system (as shown in the
Aoffload in the MDP problem) that we consider are listed in the
following equation:

atoffload =

⎧⎪⎨⎪⎩
0, ŷtkeep_the_same_state = fprevious(xt)

1, ŷtdrone_prediction = fdrone(xt)

2, ŷtcloud_prediction = fcloud(xt)
(2)

We define the state in the offload MDP to include the informa-
tion needed to choose between the actions. The choice depends
on the current sensory input, the stored previous predictions, and
the remaining query budget. The state in the offloading MDP is
displayed in the following equation:

stoffload =

[
φ

(
xt

)  
features

, f (xτdrone)  
past drone

, f (xτcloud)  
past cloud

]
(3)

The input is high-dimensional, and could yield an extremely
large state-space. The specific choice is dependent on the ex-
pense associated with utilizing the chosen features, as well as the
standard encodings or feature mappings.

Our objective using the MDP is to achieve a higher prediction
accuracy compared to heuristic solutions, while minimizing both
252
drone computation and network utilization. We can naturally
express the goal of high prediction accuracy by adding a penalty
proportional to the loss function, under which the cloud com-
puting and drone computing models are evaluated. To model
the cost of network utilization and computation, we add specific
action costs. The reward function is given by adding two different
constraints, model error and compute latency. Those two con-
straints are described inside the heuristic algorithm approach text
portions. α and β add up as 1, which will control and balance
the weights of each of these constraints. The weights in our
experiments are set to 0.5 each to simplify the evaluation results.
This ultimately gives us the reward function:

Rt
offload(s

t , at) = −αaccuracy ι(yt , ŷt)  
model error

− βcost (cost(at))  
compute latency

(4)

In addition, since the MDP problem can be applied during
the whole system operation, we also considered adding the total
energy consumption as a third metric. The reason we did not
consider energy in the heuristic algorithm is because of the work
in [30], where the power of rotating rotors is considered to be 20
times the power of computing. Hence, in the context of the time
for prediction, the transmission and processing are important on
the heuristic side. However, considering the whole system, we
can use energy as an additional metric to upgrade the system
performance and improve the decision making accuracy. Similar
to the first reward function, the updated reward function is given
as follows:

− αaccuracy ι(yt , ŷt)  
model error

− βcost (cost(at))  
compute latency

− ϵenergy(ϵ(et))  
energy

(5)

4.2.2. RL-based job scheduling algorithm
Having formally defined the drone offloading scenario as an

MDP, we can quantify the performance of an offloading approach
in terms of the expected total reward it obtains. The problem can
be expressed as in the following:

Given a drone computation model fdrone, cloud computation
model fcloud, a budget of over a finite horizon of T steps, and an
offloading MDP Moffload, find optimal offloading control approach
πoffload : Soffload → Aoffload that maximizes expected cumulative
reward Roffload:

πoffload ∈ argmaxE(
∑
T

Roffload(soffload, aoffload)) (6)

Although we framed this problem as an MDP, it is not easy
to apply conventional tools, such as dynamic programming for
solving the MDP. This is because, many of the aspects of this
problem are hard to analytically characterize, notably the dynam-
ics of the sensory input stream. This motivates our investigation
of approximate solution techniques such as the model-free rein-
forcement learning [31] approach. There are several advantages
for using reinforcement learning. First, model-free policy search
methods such as RL avoid the need to model the dynamics of the
system, especially the complex evolution of the drone’s incoming
sensory inputs. The model-free approach is capable of learning
optimal offloading policies based solely on the features included
in the state, and avoids the need to predict incoming images.
Moreover, the use of a recurrent policy allows better estimation
of latent variables defining the possible non-Markovian context
of the incoming images. In addition, RL enables simple methods
to handle stochastic rewards, which may arise in offloading due
to various costs associated with network conditions or load on
cloud compute servers. Finally, an RL approach allows inexpen-
sive evaluation of the policy, as it is not necessary to evaluate
dynamics and perform optimization-based action selection as
seen in, e.g., model predictive control.

C. Qu, P. Calyam, J. Yu et al. Future Generation Computer Systems 125 (2021) 247–262

a
a
t
p
i
b

5

m
r
c
l
a
c
a
d
a
t
v
c
v

5

v
p
o
c
c
H
t
H
b
c
l
p
t

c
b
c
e
o
s
a
a
a

b
o
c
s
U
t
d
U
f
e
a
d
s

s
i
f
o
l
a
b
b
i
H
m

p
(
a
r
d
o
p
f
T
a

5

m
m
p
u
t
t
c
n
s
f
p
e
C
t
a
S
W
R
s
p
r
v

a
w
i
a
t
c
n
B
p
i
p
t
s
m

e
e

In our solution, we use the Q-Learning reinforcement learning
lgorithm, in order to learn a policy and guide the drones on
ctions to take to minimize energy consumption and system la-
ency. Since this algorithm does not require a model, it can handle
roblems with stochastic transitions and rewards without requir-
ng adaptations. Detailed implementation of the RL approach can
e found in the GitHub repository [32].

. Control networking in drone video analytics

As previously stated, achieving optimal system performance in
ulti-drone applications in the wireless video streaming scenario

equires high bandwidth and low transmission delay. This is a
hallenging task considering wireless transmission factors such as
ow bandwidth in lossy wireless channels, delay, lack of coverage
nd congested networks. Our hierarchical FANET setup can over-
ome those challenges by supposing that the search drones will
ct as a sensor network that communicates with the GCS. Upon
etection, drones with higher capability will be used to survey the
rea. These intelligence gathering drones thereafter are supposed
o capture high quality video in a stable network connection en-
ironment. In the following, we describe a reliable and seamless
onnection and load-balanced decision making scheme in drone
ideo analytics.

.1. Protocols background

For choosing amongst the various transmission protocols and
ideo codec types at the beginning of the application, our ap-
roach considers various options to switch configurations based
n the application context and requirements. The candidate
hoices represent one option in each of the four categories, in-
luding: (i) Application-layer Protocol (choice between HTTP/1.1,
TTP/2, and HTTP/3), (ii) Transport-layer Protocol (choice be-
ween TCP, UDP and QUIC), (iii) Video Codec (choice between
.265 HEVC and H.264 AVC), and (iv) Video Resolution (choice
etween 720p, 1080p and 2K). Through combination, the possible
andidate protocol choices for the requirement schemes can be a
arge set. Table 3 shows a subset of the candidate schemes and
rovides a brief description for these schemes. The motivation of
he choice for each category is given as follows:

Application-layer Protocol. The protocol selection allows a
hoice between HTTP and RTP. The difference in performance and
andwidth requirements of various application-layer protocols
an get noticeably high when considering the impact of the ideal
ncryption, video quality and authentication schemes. Instead
f web-based video data transmissions, other wireless video
treaming protocols such as RTP are also widely used in Multi-
ccess Edge Computing focusing on accessing player buffer status
nd relevant video content information, such as frames priorities
nd coding dependencies.
Transport-layer protocol. The protocol selection allows a choice

etween TCP, UDP and QUIC. Delivery of packets in the same
rder is guaranteed with the TCP protocol. Due to the secured
onnection, stalling is witnessed in the video streaming from the
ource (i.e., drone) to the destination (i.e., the GCS). In contrast,
DP is a connection-less and unreliable protocol. During the
ransmission of video by UDP, image or video blurring is observed
ue to the loss of data packets/information. Compared to TCP and
DP, the QUIC protocol delivers data in a reliable, secure and
ast manner. Our objective is to analyze the performance differ-
nces among the QUIC, UDP, and TCP protocols and create an
pplication that meets the necessary frame rate requirement in
rone video analytics. More discussion on the transport protocol
election is provided in Section 6.4.
253
Video Codecs. Video compression is also an important con-
ideration to reduce the capacity of video content transmission
n a wireless network setting. A variety of video compression
ormats can be implemented on IoT devices, including drones. In
ur experiments, we consider two categories of video codecs —
ossless and lossy. In general, a lossless video codec will take large
mounts of space for storage and could easily fill up the channel
andwidth. On the contrary, a lossy video codec will save space
ut may lose some information, which may not be acceptable
n application scenarios, e.g., smart agriculture. We prefer to use
.265 HEVC lossless codec and use H.264 AVC lossy codec as the
ain choices in our experiments.
Video Resolution. Lastly, the choice of video resolution is im-

ortant to ensure integrity of the data being sent from the source
i.e., drone) to the destination (i.e., the GCS). The available options
re 720p, 1080p and 2K, which are the commonly used video
esolutions in recent times in applications. The reason why we
id not prefer to use 4K is that — currently not all video cameras
n commercial drones support 4K video capture. Overall, through
ermutation and combination, the possible choices for the satis-
ying requirements can be a large collection of scheme options.
able 3 shows a subset of candidate schemes along with a brief
pplication related description for each of those schemes.

.2. Use cases for network protocol selection

Recall that our scheme allows choosing of the network trans-
ission protocols and video codecs as per the users’ require-
ents. However, in a real-world application, the decision-making
rocess is quite difficult. This can be attributed to the fact that
sers might not be familiar with the encryption algorithms, and
he inherent advantages or disadvantages in choosing amongst
he various network protocols. We suppose that the drone appli-
ation users lack of the knowledge to choose from the optimal
etwork properties and video properties. Hence, we provide a
ubjective use case requirement table and provide discrete levels
or them to choose from. The dataset of the network and video
roperties selection is based on the drone flight traces we gen-
rate from drone flight experiments in our previous work [33].
onsequently, users need to be presented with relevant informa-
ion of suitable candidate options to choose the best option. To
ssist with this process, we propose a ‘‘Resource-aware Protocol
election Algorithm’’ as one of our DroneCOCoNet components.
e identified ≈90 possible scheme choices, from which the
esource-aware Protocol Selection Algorithm will choose when
etting-up a protocol configuration for a given Drone-GCS ap-
lication. After the user provides the choice of the application
equirements, we run the ML algorithm to select the network and
ideo properties choice in the application configuration.
As part of the solution approach, we use both single thread

nd multi-thread programs to categorize and simplify the real-
orld drone video analytics applications. The number of threads

s determined based on the ratio of drones and the GCS nodes
vailable in the field. We categorize the drone to GCS ratio in
hree modes: one-to-one, one-to- many and many-to-one. In our
ase, if on average an application has more drones than GCS
odes, it is considered as a many-to-one mode, and vice versa.
oth of these situations are used in the context multi-thread
rograms and involve parallel execution. Surprisingly, if the drone
tself is programmable, we could also provide a multi-thread
rogram solution on the one-to-one mode. In general, a single
hread program approach is simpler and easier to design and
etup. In our QUICer (see Section 5.4), we will mainly focus on
ulti-thread program solutions.
For our system to choose from the available options, it is

ssential to collect a user’s requirement for the various param-
ters in the system. Table 4 shows the parameters used for client

C. Qu, P. Calyam, J. Yu et al. Future Generation Computer Systems 125 (2021) 247–262

a
f
a

Table 3
A subset of candidate schemes for prerequisites on various scenarios

Requirements scheme Application protocol Transport protocol Video codec Video resolution Description

H1_TCP_H264_720P HTTP/1.1 TCP H.264 720p Slow, lossless video quality. Good
for small analytics tasks.

H2_TCP_H264_720P HTTP/2 TCP MPEG-4 720p Fast scheme, high security. Lossy
video quality. Good for everyday
surveillance system.

H3_QC_H264_1080P HTTP/3 QUIC H.264 1080p Very high security and fast scheme,
lossless video quality. Good for
crime detection and tracing.

RTP_UDP_MP4_1080P RTP UDP MPEG-4 1080p Low security, very fast scheme,
lossy video quality. Good for traffic
management.

H3_QC_H264_2K HTTP/3 QUIC H.264 2K Very high security, lossless video
quality and high resolution. Good
for disaster scene response.

H1_TCP_MP4_2K HTTP/1.1 TCP MPEG-4 2K Slow, low security scheme but with
high video quality. Good for smart
agriculture/farming.
Table 4
User provided parameter values and description.
Category Parameter Values Description

Analytics layer

P1 Real-time analytics 1 No Real-time analytics needed
3 Accept slightly response delay
5 Fast response, high real-time

needed

P2 Video quality 1 Surveillance used low quality video
3 Entertainment level used video
5 High quality scientific used video

System layer

P3 Parallel level 1,3,5 Drone to Server Ratio: One-to-One,
Many-to- One, One-to-Many

P4 Bandwidth usage 1–5 [0 Mbps - 50 Mbps), [50 Mbps -
100 Mbps), [100 Mbps - 500 Mbps),
[500 Mbps - 2 Gbps), [2 Gbps+)

P5 On-flight CPU level 1–5 [0 MHz - 75 MHz), [75 MHz - 250
MHz), [250 MHz - 750 MHz), [750
MHz - 1.5 GHz), [1.5 GHz+)

Energy layer Total battery capacity Actual number

Ideal flight time Actual number
benchmark analysis in our scheme, which we categorize into
three different layers, i.e., (i) the analytics layer, (ii) the system
layer, and (iii) the energy layer; each of these layers contains
multiple parameters. The values of these parameters represent
the user’s desired level for a given feature, with a higher level
meaning that the user prefers to have the feature, and a lower
level signifies that a particular feature is not necessary. The 7
metrics under the ‘Parameter’ column in Table 4 can be used to
form the cluster of devices. By calculating the mean values of each
variable for each cluster, we can classify them into intermediate
categories. In other words, for each desired requests from users,
we will have one solution for them, which is categorized by
the rate generated during our experiments and learning results.
The detailed categorized selection and decision making results
can be seen in our prior work in [33]. We use ML models to
process real-world drone traces that include various mobility
models, geospatial link information and on-time network status
obtained from real-world data-gathering efforts. We remark that
the learning results details are explained later in Section 6.4.

5.3. Resource-aware protocol selection algorithm

Once user requirements are collected, the protocol selection
lgorithm shown in Algorithm 2 is invoked to choose a scheme
rom the candidate scheme catalog. Three major threshold vari-
bles have been set up to help make decisions, mapped on a
254
scale of 1 to 5. The threshold value to decide whether the appli-
cation requires real-time analytics can be set using the variable
real_time_threshold. For instance, a threshold of Level 3 implies
that this specific application requires a drone with video analytics
computing resources to transmit videos and receive instructions
asynchronously. Similarly, video_quality_threshold is used to iden-
tify the video codec and video resolution so that the combination
could satisfy the user’s accuracy requirement accuracy_threshold.
All the decisions and threshold variables are created based on the
analytics layer requests/settings.

As shown in Algorithm 2, the inputs include: video data to
be encoded and transferred, Video, the system layer variables,
[systemSet], the analytics layer variables, [analyzSet], and the en-
vironment properties of drone systems, [envSet]. [systemSet] and
[analyzSet] are given as system settings and user requirements
for a specific application scenario. [envSet] is given by the drone
system and the application context. In our case, [envSet] includes
the camera information, battery information and scenario de-
scription. We may not get the exact accuracy requirements from
the [envSet], since it is dependent on the video analytics algo-
rithm. However, we could get a preliminary decision on which
a transmission protocol can be used to avoid the transmission
being a bottleneck during the video analytics pipeline execution.
The output of the algorithm provides the specific application and
transport layer protocols to be used for drone video transmission,
video codec selection, and the recommended video resolution.

C. Qu, P. Calyam, J. Yu et al. Future Generation Computer Systems 125 (2021) 247–262

t
w
t
a
d

5

a
f
p
p
p
b
b
a
w
o

5

w
l
s
t
d

f
t
w
t
s

Algorithm 2: Resource-aware Protocol Selection Algorithm
Input: Video:= video data to be packaged; [systemSet]:= set of system layer

properties, with weight; [analyzSet]:= set of analytics layer properties,
with weight; [envSet]:= set of all essential properties on drone system
(battery, camera, and etc)

Output: P:= protocol to be used for transmission; VC:=video codec to be
used for compression;VR:= video capture resolution(default setting)

1 Function Main(Video, [systemSet],[analyzSet]):
2 Data← Video
3 if systemSet[parallelLevel] >= 3 then
4 Thread()
5 VideoDecision([analyzSet])
6 P .trans == QUIC && P .app == HTTP3
7 end
8 else
9 VideoDecision([analyzSet])

10 if analyzSet.real_time <= real_time_threshold then
11 P .trans == TCP
12 P .app == [envSet].auth == true? (HTTP2 : HTTP1)
13 else if envSet.scenario <= accuracy_threshold then
14 P .trans == UDP&&P .app == RTP
15 else
16 P .trans == QUIC&&P .app == HTTP3
17 end
18 end
19 exe(Video)
20 return
21 Function VideoDecision([analyzSet]):
22 if analyzSet.videoQuality <= video_quality_threshold then
23 VC == H.264
24 VR == envSet.camera < 1080P? (720p : 1080P)
25 end
26 else
27 VC == H.265&&VR == 2K
28 end
29 return VC, VR

5.4. QUICer: Application pipeline data movement acceleration

In this section, we introduce QUICer, a new video transmission
ool that we developed to integrate HTTP/3 and QUIC protocols
ith a multi-thread program capability. To show application in-
egration ability of QUICer, we also present an advanced video
nalytics application pipeline that uses the QUICer tool for video
ata transmission.

.4.1. QUICer implementation
In most cases, simply making decisions on video properties

nd networking protocols cannot ensure optimized system per-
ormance. One solution is to use a multi-thread program to ex-
onentially speed up the video analytics process. To achieve
arallelism in data transmission within a drone video analytics
ipeline, we propose a novel python-based tool viz., QUICer that
uilds upon the popular QUIC transport protocol. QUICer operates
y using HTTP/3 over QUIC, thus enabling faster transfer rates,
nd consists of a client/server program, which support multiple
orkers to allow multi-threading capability in data transmission
ver a network path between the drones and GCS.

.4.2. Application pipeline integration
We integrate QUICer into a visual object tracking pipeline,

hich consists of 3 application modules to detect and return the
ocation of a specified class of objects (e.g., cars) in a video data
ource. Each module includes HTTP3/QUIC client/server processes
hat accept data from upstream processes and direct output to
ownstream processes (see Fig. 3).
Video Source. The video source for our pipeline is a video feed

rom a multi-drone client. This video is simultaneously copied
o all other devices for processing. To achieve a better result,
e used the H.265 codec to compress the video source and set
he video resolution at 2K that is commonly used in drone video

ystems.

255
Motion Module. The motion module performs image-based
motion detection on the input video. For each frame in the video,
we established a local 3D spatial–temporal volume and computed
the information about temporal gradient changes, which can be
used to distinguish between moving and stationary regions. Sub-
sequently, a binary mask showing the moving objects was gener-
ated and sent to the Fusion & Tracking module. Motion detection
can greatly improve object tracking performance especially for
the hover mode of UAVs where the video is stabilized.

Detection Module. In this module, we employed YOLO [34], a
deep learning-based object detector using a convolutional neural
network, for object detection to enhance the tracking perfor-
mance. We used the weights that were pre-trained on Ima-
geNet [35]. Note that in the practice of our drone video analytics
experiments, we use VisDrone [36] dataset as our object detection
testing dataset. This is because the VisDrone dataset provides
bird-view images that are different from the multi-angle images
in the ImageNet dataset. The detection module can increase the
tracking accuracy by refining the object bounding box. We also
use the detection module to restart the tracking process when
the tracker loses the target.

Fusion & Tracking Module. In this module, we operate the visual
object tracking on a selected target. We used the CSRT [37] as a
single object tracker that relies on distinctive object appearance
for tracking. CSRT is able to handle challenging scenarios such as
object deformation, fast camera motion, low video frame rate, and
occlusion. We utilize the information provided by both motion
module and detection module to assist the tracker. We have
developed a rule-based fusion model that can effectively fuse
the motion, detection, and appearance cues and produce optimal
tracking results.

6. Performance evaluation

In this section, we first introduce the evaluation setup and
datasets collected from a real drone use case scenario. Then we
discuss the heuristic based scheduling results on edge computa-
tion offloading. In addition, we present the RL approach results
compared to the heuristic solution, and provide a comprehensive
solution by considering together the accuracy, latency and energy
metrics. Lastly, we present the control networking experiments,
where we compare QUICer with TCP and UDP connections and
show the advantages of using our QUICer approach.

6.1. Evaluation setup

For evaluation of our DroneCOCoNet framework, we built a
hierarchical FANET environment, where we consider various mo-
bility models and increased drone to GCS server ratios. To simplify
our experiments, we collected 20 video clips with 40 s and 25
FPS. 10 of the video clips are with low density of objects, and the
other 10 video clips are with high density of objects. For each of
the 10 video clips, we use 70% of the frames for testing and 30%
of the frames for training, with 10 fold validations. Those videos
are collected from 3 various version of drones (DJI Phantom 3,
DJI Mavic 2 and Parrot Drone), each with 1000 image frames
as the same settings in VisDrone dataset [36]. These 20 video
clips represent 3 mobility models, i.e., random way point, Gauss–
Markov and mission plan based, with different setups shown in
Table 3. In addition to using the parameters collected in Section 4,
we also query cost and mean classification loss during the flight
for calculating the reward function in the MDP problem. For the
energy evaluation, we measure the total flight time when using
a battery, and calculate the energy consumption per second.

We have noted that the energy consumption in the flight is

significantly larger in comparison to the energy consumption for

C. Qu, P. Calyam, J. Yu et al. Future Generation Computer Systems 125 (2021) 247–262

T
E

m
a
m
m
c
c

t
s
l
o
p
s
i
s
t

6

i
c

f

Fig. 3. Visual object tracking pipeline that includes the modules integrated with QUICer for high-performance object tracking.
able 5
xtended metrics related to the real-flight experiment dataset.
Name Content

Attitude data Mainly includes the navigation
information including location, speed,
attitude, angular speed, etc.
and sensors information including
accelerators, gyroscope, magnetometer,
barometer, etc.

OSD data Mainly includes the flight status
information of the drone, such as GPS
signal strength, flight status,
and Return to Home status, etc.

Remote controller data Mainly includes the remote controller’s
information, such as flight mode,
and controller stick’s movements, etc.

Battery data Mainly includes the battery’s
information, including voltage, current,
temperature, capacity, etc.
Only consider battery cost on
computing

Obstacle avoidance data Mainly includes the Obstacle Avoidance
information of the vision sensors,
ultrasonic sensors and infrared sensors.

the prediction. Consequently, the main factor in the decision to
ground a UAV is based on the flight pattern and related battery
charge necessary to complete a computation task. Further, in the
evaluation section (Section 6.3), we use energy consumption as
an add-on to our updated reward function, and assume that the
energy consumption is not a major factor in the drone video
analytics side but it is a significant factor on the environment side.

The real drone flying path was tested using three mobility
odels to predict the network environment, transmission time
nd energy viz., Random Mobility model, Gauss–Markov Mobility
odel and Mission-Based Mobility model. The flight time, flight
ode, GPS satellites number, speed, battery consumption per-
entage and voltage were recorded. A realistic drone based data
ollection and associated formats are shown in Table 5.
In terms of the benchmarks for comparison purposes related

o computation offloading, we considered a baseline and other
tate-of-the-art approaches. First, we consider three simple so-
utions offloading decisions are made on either a random basis,
ffload only basis or a drone-only basis. In addition, for com-
arison of our heuristic based scheduling results, we select a
tate-of-the-art approach viz., QL-JTAR as a side-by-side compar-
son method. Further, for comparison of our RL approach, we
elect an Oracle baseline as an ideal upper limit. More details on
he RL approach related baselines are provided in Section 6.3.

.2. Heuristic based scheduling results

Fig. 4 shows the evaluation results with our heuristic solution
n a real multi-UAV environment. Based on the results data, we
onclude the following observations:
Observation 1: Our heuristic-based offloading scheme outper-

ormed local-execution and Q-learning based QL-JTAR solution on
256
scheduling time for low drone-to-ground-server ratios. As shown in
Fig. 4(a), our approach follows a similar trajectory as the Offload
Only, which offloads all of the tasks to the ground (i.e., the
GCS connected to the edge server). We found that our heuristic-
based offloading scheme resulted in up to 15% better scheduling
make-span than the offload-only scheme. Random offloading is
sporadic with no definable correlation and contains a far greater
degree of variance compared to the other offloading schemes.
The optimal scheduling time is very consistent when processing
is performed only on the drone locally, even when the drone
to ground server ratio changes. This is because of the parallel
execution of the tasks done on the drones, with each drone
processing its own video stream without ever offloading to the
ground. Consequently, there will be no build up of the queue
on the ground. In addition, as we can observe from the QL-JTAR
solution results, QL-JTAR solution takes ≈800 s in all experi-
ments, which is not efficient enough for the low ratio situation.
When we consider significantly more drone flight paths on the
area, QL-JTAR may perform better than our approach. However,
the difficulty on operational drones will exponentially increase
when the ratio reaches 10. Hence in our experiments, we only
considered low drone-to-ground-server ratio cases.

Observation 2: Our heuristic-based offloading scheme outper-
formed Random offloading and Local Only execution on energy con-
sumption, and provides reasonable energy savings compared to the
QL-JTAR solution. From Fig. 4(b), we can see that the energy
consumption rate grows at a very fast rate as the air to ground
server ratio increases in the Local Only and Random schemes.
However, our approach consumed energy consistently at a lower
rate than the Local Only and random offloading schemes. How-
ever the energy consumption was slightly higher than the Offload
Only scheme. This is reasonable because the energy consumed by
the Offload Only scheme involves just the transmission energy,
but not the energy used for video processing. In addition, this
difference in energy consumption between our approach and the
Offload Only scheme is fairly marginal. Considering that our ap-
proach performs up to 15% better than the Offload Only scheme in
terms of scheduling time, we conclude that our approach overall
performs better when both time and energy are considered.

From both the above observations, we can see that our ap-
proach consistently outperformed the Local Only scheme and the
QL-JTAR approach until the drone-to-ground server ratio reached
≈ 17 : 1. This is because, as more drones are connected to the
server with each recording a live stream, more tasks will naturally
be offloaded to the ground GCS. For large drone to ground ratios,
the queue on the ground will grow very large, meaning that it will
take a long time for all tasks in the queue to be completed. Thus,
we designed a dynamic computation offloading approach based
on reinforcement learning, which we introduced in Section 4.2
and whose performance evaluation is presented in the following
section.

6.3. Reinforcement learning based scheduling results

Similar to the comparison methods introduced in the context

of the heuristic algorithm evaluation, we again use the random,

C. Qu, P. Calyam, J. Yu et al. Future Generation Computer Systems 125 (2021) 247–262

g

l
a
a
f
R

0

a

p
i
f
f
i
h

h
j
c
r
l
n
o

Fig. 4. Offload only, local execution (drone) only, random approach, QL-JTAR learning based approach and our heuristic approach results of: (a) increasing drone to
round ratio (Drone:GCS) and optimal schedule time (s) and (b) Drone:GCS and average energy per drone (Joules).
Fig. 5. Experiment results under different baselines: random, drone-only, cloud-only, heuristic and oracle showing comparison in terms of metrics: mean episode
reward, mean model query cost and mean classification loss.
drone-only and offload-only approaches as our baseline meth-
ods. As we can observe from Eq. (2), during the procedure for
making action decisions on MDP, those three baseline approaches
can be achieved by selecting a pre-defined action at without
earning procedures. In addition, besides those three baseline
pproaches and the heuristic itself, we also introduce an oracle
pproach as a upper limit bound which provides a standard
or our learning-based algorithm. Consequently, we compare our
L-based approach against the following baselines:
Random Baseline π random

offload . This simple benchmark chooses a
random action at offload 0,1,2 when the cloud query budget is
not saturated and thereafter chooses randomly from actions 0–2.

Drone-only Baseline πdrone
offload. The Drone-only baseline chooses

at offload = 1 at every time-step to query the drone computation
model and can optionally use past drone predictions at offload =
in between.
Cloud-only Baseline π cloud

offload. The cloud-only baseline chooses
t offload= 2 uniformly uses the past cloud predictions at offload
= 1 in between.

Heuristic Baseline πheuristic
offload . This baseline uses previous ap-

roach on applying supervised learning results on decision mak-
ng at the beginning of the experiment. It will choose a heuristic
or selecting the most optimal solution at the beginning of each
light without changing the decision through the flight. Depend-
ng upon the characteristics of each trace in the traces dataset, the
euristic solution on model error could achieve different results.
Oracle, Human-selected Baseline π oracle

offload. This baseline uses
uman-selected approach, which achieves 100% accuracy on ob-
ect/pedestrian recognition and registration, and is used only for
omparison purposes. Here, we ignore the calculation time on
einforcement learning decision making and always use the ideal
ocation for computation. On the other hand, oracle baseline can-
ot be achieved in the real-world experiments since the location
f the object and the registration are given in advance. In general,
257
the results will vary for a given trace dataset in terms of model
error.

To summarize, offload-only and drone-only approaches con-
sider the lower bound of metrics such as e.g., compute latency
and model error. Whereas, the oracle considers an upper bound
of the algorithm, which results in an ideal solution, where the
performance is known in advance and the selection is given
manually by the users.

Observation 1: Our heuristic-based offloading scheme Pareto-
optimizes the trade-offs compared with drone-only execution and
offload-only execution in terms of computation latency and per-
formance in the video analytics application. Fig. 5 shows the
comparison of baseline approaches with heuristic approach only
by calculating their overall rewards generated during the whole
flight period in the testing trace dataset. For example, Fig. 5(a)
represents the mean episode reward R with the components of
compute latency (represented as query cost in y-axis in Fig. 5(b))
and model error (represented as classification loss in Fig. 5(c)). In
Fig. 5(a), the heuristic baseline performed slightly greater than
the cloud-only and the drone-only baseline. This is because the
heuristic approach predicted the environment in advance and
scheduled the jobs to save the resource to the maximum extent.
However, as a trade-off, the heuristic approach has lower perfor-
mance compared to the drone-only baseline with regards to the
query cost (see Fig. 5(b)) and the cloud-only baseline in accuracy
(see Fig. 5(c)). This is because of its scheduling time performance
and the presence of a fixed job queue, regardless of the long
waiting time involved with complex jobs.

To summarize, without the learning procedure, our heuristic
baseline Pareto-optimizes the trade-offs between computation
cost and video analytics performance compared with drone-only,
cloud-only baselines. To achieve better results, we run experi-
ments using our RL approach, which provides better performance
than all the other lower bound comparison methods.

C. Qu, P. Calyam, J. Yu et al. Future Generation Computer Systems 125 (2021) 247–262

a
t
f
t
e
t
t
e
d
e
I
h
q
t
r

p
a
I
a
t
t
p
c
c
p
d
w
o
o
R
n
i
e
l

e
o
f
e
w

d
(
T
i
t
M
O
c

2
a
C
t
u
t
a
w
b
l
r
t
a
p

We evaluated the performance of the RL approach against the
bove baselines on 10 diverse traces in the testing set. In each of
he traces, the number of objects and their locations were distinct
rom the traces in the training set. To test an offloader’s ability
o adapt to various network bandwidth constraints, we evaluated
ach trace with 5 various network condition settings, which map
o the P4 values range in Table 4. Given that we use different
races, the heuristic and oracle solutions could get different model
rrors. However, the other three baselines (Random, cloud-only,
rone-only) performance can be seen to be nearly the same since
ach of them uses the same underlying decision making strategy.
n addition, comparing Figs. 5(b) and 6(a), we noticed that the
euristic algorithm provides unstable results (i.e., it produces less
uery cost than training the database). Moreover, we found that
he oracle could provide similar results in the low range with
egards to the query cost metric.

Observation 2: In the case without energy concerns, our RL ap-
roach Pareto-optimizes the trade-offs between computation cost
nd video analytics performance during the application procedure.
n the case with energy concerns, our RL approach outperformed
ll other non-oracle baseline approaches considering all features in
erms of computation cost and video analytics performance during
he application procedure. Fig. 6 shows test results for our RL ap-
roach based on the MDP problem setting in Section 4.2.1. When
oncerned about both application accuracy and mean offloading
ost, our RL approach Pareto-optimizes the trade-offs between
erformance vs. computation offloading cost during real-time
rone video analytics. Note that we only consider the latency
hen performing image processing, instead of considering the
verall latency for both transmission and processing. As we can
bserve from Fig. 6(a), in the case without energy concerns,
L approach cannot outperform on compute latency although a
otable improvement on model error is obtained. This is because,
n the case without energy concerns, RL approach will put all the
fforts on getting the video analytics accuracy which will in turn
ead to overall higher energy consumption.

To balance the performance in terms of compute latency, model
rror as well as the overall energy consumption, we introduce
ne more feature i.e., energy consumption to balance the reward
unction in MDP. We can infer that — the higher the weight on
nergy consumption, the lower the chance that the RL approach
ill query for offloading, and lower will be the query cost.
Fig. 7(a) shows the distribution of rewards obtained by the

ifferent offloading approaches using the new reward function
Eq. (5)), where our RL approach is depicted in the orange boxplot.
he mean episode reward is calculated by the reward function
n Eq. (4). We also break down the mean episode reward into its
wo components, i.e., (i) prediction accuracy represented by the
ean Classification Loss, and (ii) latency represented by the Mean
ffloading Cost. We show the mean performance over all testing
lips for each approach in Fig. 7(b).
Observation 3: Our results show that our RL approach has at least

40% higher median episode reward than other offloading schemes,
nd is comparable with the lower bound of the oracle solution.
ompared to the heuristic solution, RL approach is 1.9x higher on
otal rewards (see Fig. 7(a)). This is because, the RL approach eval-
ates the cost dynamically on ‘where’ to execute the job at each
ime step by comparing trade-offs on accuracy, latency as well
s energy. By comparing Fig. 6(b) and Fig. 7(b), we can see that
hen considering the energy parameter, RL approach achieves
etter results on mean offloading cost. This is because, there is
ess opportunity on changing executing position in a stable envi-
onment. Essentially, the RL approach learns to judiciously query
he remote server when the drone model is highly uncertain. This
llows it to improve the overall system accuracy and minimize

rediction loss. However, the RL approach has lower offloading G

258
Table 6
Policy-based estimate (baseline) and machine learning prediction results
comparison.
Model type Protocol 95% CI Video property

95% CI
PSNR

KRR (0.652, 0.928) (0.803, 0.927) (39.86, 46.93)
SVR–RBF (0.779, 0.833) (0.9034, 0.952) (33.59, 46.93)
GPR (0.813, 0.882) (0.7523, 0.8) (32.26, 39.86)
RFR (0.9124, 0.96) (0.9032, 0.97) (32.26, 49.37)

cost since the bandwidth limits cause the drone-only baseline to
periodically, but sparsely, sample the prediction time period. On
the contrary, the RL approach has better prediction accuracy than
the cloud scheme. This is because, the past prediction can keep
the previous result for reference, which consequently keeps the
object tracking and recognition to be more accurate and increases
the overall processing speed.

To summarize, the experimental results show that our
heuristic-based offloading decision-making scheme enables lower
scheduling time and energy consumption for low drone-to-ground
server ratios. In addition, our dynamic reinforcement learning-
based decision-making approach increases the accuracy and saves
overall time periodically, as well as provides energy efficiency.
We remark that these results can also hold in various multi-
UAV scenarios with different numbers of detected objects in
e.g., smart farming, transportation traffic flow monitoring and
disaster response.

6.4. QUICer based control networking results

Before we introduce QUICer as a communication strategy,
we investigate how machine learning methods1 could help us
categorize the user requirements and provide an appropriate
transport protocol choice (choose between TCP and UDP), and
video property choice (category of video resolution and video
codec). Table 6 provides the machine learning model results on
networking protocol and video properties selection. We com-
pared results with real-world experiments for each model and
also calculated the 95% CI of accuracy for each model. We firstly
conclude that — RFR gives more accuracy on networking protocol
and video property selection, however the decision performance
is in the unstable range of PSNR within the transmitted video.
Secondly, we conclude that the KRR can generate better results
with a stable range of PSNR, although the performance is lower
than other machine learning models. There exists an advanced
protocol which could dynamically decide either to use TCP or UDP
during the application execution viz., FDSP. However, our multi-
drone video analytics application scenarios do not benefit from
the use of FDSP as a communication protocol strategy. There are
primarily two reasons: (i) we cannot distinguish (in real-time) the
critical part to assign the TCP protocol during the drone video
streaming, and (ii) in the case of the limited bitrate condition,
during our whole flight experiments, we did not face the situation
where QUIC performs with less FPS in the video analytics pipeline
than in case of FDSP. To elaborate on the second reason, the
only situation where the limited bitrate performance is lower
than expected is when the drone flies out of range, which is an
undesired situation in our experiments.

QUICer’s performance is significantly improved by using mul-
tiple connections between the client and server. QUICer supports
asymmetric setups, e.g., having 4 server workers and 8 client
workers, granting it the ability to adapt to the application. In our

1 KRR: Kernel-Ridge Regression; SVR–RBF: Radial Basis Function SVM; GPR:
aussian-Process Regression; RFR: Random Forest Regression.

C. Qu, P. Calyam, J. Yu et al. Future Generation Computer Systems 125 (2021) 247–262

e

Fig. 6. Experiment results on testing traces using different baselines: random, drone-only, cloud-only, heuristic, oracle and our proposed RL approach. Comparisons
are made for mean model query cost and mean classification loss without energy concern.
Fig. 7. Experiment results using different baselines: random, drone-only, cloud-only, heuristic, oracle and our proposed RL approach. Comparisons are made for mean
pisode reward, mean model query cost and mean classification loss with energy concern.
Fig. 8. Frame rates CDF achieved by QUICer when using a varying number of
simultaneous connections between server and client, compared with frame rate
achieved with TCP and UDP performance.

current implementation, QUICer requires the client and server
to know the number of connections prior to launching. How-
ever future versions could utilize a brokering endpoint on the
server, allowing the client to dynamically adapt to the needs of
the server. We remark that QUICer can be used to improve the
processing speed of an object pipeline in terms of the communi-
cation level. Thus, any video processing pipeline which leverages
function centric computing like we do in this work, can utilize
QUICer to speed-up the processing tasks.
259
As shown in Fig. 8, we tested different levels of simultane-
ous connection between multi-drone and GCS system using our
multi-thread program that is part of our QUICer implementation.
QUICer L1, L2 and L3 represents 1 connections, 4 connection and
8 connections, respectively. Compared with traditional transport
protocols such as TCP and UDP, the QUICer could achieve 12x to
140X improvement in video data transmission. This is primarily
due to two reasons: (i) Owing to the one-time hand-shake feature
of the QUIC protocol, the video streaming and data transmission
experience a speed-up in comparison with TCP connections, and
(ii) QUIC with HTTP/3 connection is fault tolerant on data pack-
ets, which ensures higher video processing speed and accuracy.
Although QUICer is stable, has high-speed and supports package
lossless connections, the underlying QUIC with HTTP/3 may not
be an ideal solution. Taking QUICer L1 as an example: with a
single QUICer connection, we could only get about 12X speed up
compared to TCP and UDP protocols. However, if we introduce
a multi-thread program implementation, we can easily get up to
140x speed-up with 8 threads, or even higher speed up with more
threads. Since a multi-thread program solution is often limited
by resources on the edge device, most of our tests have been
performed by using at most 8 threads to collect the performance
results presented in Fig. 8.

To summarize, if device settings on the drone permit QUIC
protocol selection, by utilizing our QUICer as a multi-threaded

C. Qu, P. Calyam, J. Yu et al. Future Generation Computer Systems 125 (2021) 247–262

c
a
g
s
s
S
c
s
u
w

7

r
w
t
o
a
p
a
c
t
f
p
d
d
v
i
t
c
t
p
a
f

s
p
s
o
t
Q
d
c
s
s
w
o
a
t
t
r

D

c
t

A

S
a
W
a
t

ommunication strategy, the multi-UAV video analytics can
chieve notable speed-up on video transmission in drone to
round transmissions. However, if no parallel execution is con-
idered for transmission or if there are other limitations of device
ettings on the drone, our approach provides other methods.
pecifically, we can provide features of various candidate protocol
ombinations on video data transmission and compression codec
trategies in specific cases e.g., in the case where we know how
sers will utilize the drone video analytics to make decisions
hen setting up their drone data processing applications.

. Conclusion

In this work, we presented DroneCOCoNet, a framework to
ealize learning-based computation offloading and control net-
orking strategies during drone video analytics. We detailed
wo general mathematical formulas for the drone computation
ffloading problem, one that adopts a heuristic algorithm, and
nother that uses a reinforcement learning algorithm. Our ap-
roach to formulate the edge computation offloading problem
s a Markov Decision Problem is both general and powerful
ompared to supervised learning methods. We demonstrated
hat reinforcement learning can be used in the DroneCOCoNet
ramework effectively, which outperforms common heuristic ap-
roaches as well as other approaches. We also designed and
etailed our design of QUICer, a novel application to maximize
ata transmission using parallel execution within a given drone
ideo analytics pipeline. Our evaluation using real-world exper-
ments showed that our QUICer approach significantly increased
he system performance compared to traditional network proto-
ols such as TCP and UDP. We also obtained insights that indicate
hat our RL approach is an effective way to optimize edge com-
utation offloading under constrained resources while supporting
pplications such as border security, disaster response, smart
arming and smart city surveillance.

Our future work includes evaluating the DroneCOCoNet using
imulators in addition to real experiments to introduce more
arameters, generate more comprehensive data for various drone
cenarios. Such work can help further evaluate both computation
ffloading and networking solution approaches as a global op-
imization problem in the orchestration of MEC resources. Our
UICer configurations can be replaced with TCP configurations
ynamically when faced with low bitrate conditions that can be
aused by e.g., drones flying over longer distance paths that cause
ignificant degradation of signal conditions. On the evaluation
ide, we supposed that a real world experiment in a small testbed
ould further strengthen our validation experiments. However,
ur methods used in the simulation experiments are realistic
nd are intended to be used as part of large real-world testbeds
hat are challenging i.e., they are time consuming and expensive
o build in practice and are also limited by current government
egulations on drone flights for recreational or research purposes.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

This material is based upon work supported by the National
cience Foundation, USA under Award Number: CNS-1647182
nd the Army Research Lab, USA under Award Numbers:
911NF1820285 and W911NF1910181. Any opinions, findings,

nd conclusions or recommendations expressed in this publica-

ion are those of the author(s) and do not necessarily reflect the

260
views of the National Science Foundation or the Army Research
Lab.

We sincerely thank Dr. Derek Anderson, Dr. Hadi Ali Akbar-
pour and Dr. Ekincan Ufuktepe for providing expert consultation
to the team. In addition, we would also like to thank Alicia
Esquivel Morel and Wenbin Guo for helping us testing and flying
the drone fleets.

References

[1] I. Bekmezci, I. Sen, E. Erkalkan, Flying ad hoc networks (FANET) test bed
implementation, in: 2015 7th International Conference on Recent Advances
in Space Technologies (RAST), IEEE, 2015, pp. 665–668.

[2] A. Guillen-Perez, M.-D. Cano, Flying ad hoc networks: A new domain for
network communications, Sensors 18 (2018) 3571, http://dx.doi.org/10.
3390/s18103571.

[3] W. Jung, J. Yim, Y. Ko, S. Singh, ACODS: adaptive computation offloading
for drone surveillance system, in: 2017 16th Annual Mediterranean Ad Hoc
Networking Workshop (Med-Hoc-Net), 2017, pp. 1–6, http://dx.doi.org/10.
1109/MedHocNet.2017.8001647.

[4] Q. Pham, et al., A survey of multi-access edge computing in 5G and
beyond: Fundamentals, technology integration, and state-of-the-art, 2019,
CoRR abs/1906.08452 arXiv:1906.08452.

[5] D. Chemodanov, C. Qu, O. Opeoluwa, S. Wang, P. Calyam, Policy-based
function-centric computation offloading for real-time drone video analyt-
ics, in: 2019 IEEE International Symposium on Local and Metropolitan Area
Networks (LANMAN), 2019, pp. 1–6, http://dx.doi.org/10.1109/LANMAN.
2019.8847112.

[6] A. Chriki, H. Touati, H. Snoussi, F. Kamoun, FANET: Communication, mo-
bility models and security issues, Comput. Netw. 163 (2019) 106877, http:
//dx.doi.org/10.1016/j.comnet.2019.106877, URL: http://www.sciencedirect.
com/science/article/pii/S1389128618309034.

[7] M. Seufert, et al., QUICker Or not? -an empirical analysis of QUIC vs TCP for
video streaming QoE provisioning, in: 2019 22nd Conference on Innovation
in Clouds, Internet and Networks and Workshops (ICIN), 2019, pp. 7–12,
http://dx.doi.org/10.1109/ICIN.2019.8685913.

[8] S. Hayat, E. Yanmaz, R. Muzaffar, Survey on unmanned aerial vehicle net-
works for civil applications: A communications viewpoint, IEEE Commun.
Surv. Tutor. 18 (4) (2016) 2624–2661, http://dx.doi.org/10.1109/COMST.
2016.2560343.

[9] N.H. Motlagh, T. Taleb, O. Arouk, Low-altitude unmanned aerial vehicles-
based internet of things services: Comprehensive survey and future
perspectives, IEEE Internet Things J. 3 (6) (2016) 899–922.

[10] A. Otto, N. Agatz, J. Campbell, B. Golden, E. Pesch, Optimization approaches
for civil applications of unmanned aerial vehicles (UAVs) or aerial drones:
A survey, Networks (2018) http://dx.doi.org/10.1002/net.21818.

[11] B. Dab, N. Aitsaadi, R. Langar, Q-learning algorithm for joint computation
offloading and resource allocation in edge cloud, in: 2019 IFIP/IEEE Sym-
posium on Integrated Network and Service Management (IM), 2019, pp.
45–52.

[12] N. Motlagh, M. Bagaa, T. Taleb, UAV-based IoT platform: A crowd surveil-
lance use case, IEEE Commun. Mag. 55 (2) (2017) 128–134, http://dx.doi.
org/10.1109/MCOM.2017.1600587CM.

[13] J. Yu, A. Vandanapu, C. Qu, S. Wang, P. Calyam, Energy-aware dynamic
computation offloading for video analytics in multi-UAV systems, in:
ICNC 2020 - International Conference on Computing, Networking and
Communications, 2020.

[14] C. Jiang, X. Cheng, H. Gao, X. Zhou, J. Wan, Toward computation offloading
in edge computing: A survey, IEEE Access 7 (2019) 131543–131558, http:
//dx.doi.org/10.1109/ACCESS.2019.2938660.

[15] S. Chinchali, A. Sharma, J. Harrison, A. Elhafsi, D. Kang, E. Pergament, E.
Cidon, S. Katti, M. Pavone, Network offloading policies for cloud robotics:
a learning-based approach, 2019, CoRR abs/1902.05703 arXiv:1902.05703.

[16] Y. Wang, Z.Y. Ru, K. Wang, P.-Q. Huang, Joint deployment and task
scheduling optimization for large-scale mobile users in multi-UAV-enabled
mobile edge computing, IEEE Trans. Cybern. 50 (9) (2020) 3984–3997,
http://dx.doi.org/10.1109/TCYB.2019.2935466.

[17] T. Yang, et al., Deep reinforcement learning based resource allocation
in low latency edge computing networks, in: 2018 15th International
Symposium on Wireless Communication Systems (ISWCS), 2018, pp. 1–5,
http://dx.doi.org/10.1109/ISWCS.2018.8491089.

[18] A. Shakarami, M. Ghobaei-Arani, A. Shahidinejad, A survey on the com-
putation offloading approaches in mobile edge computing: A machine
learning-based perspective, Comput. Netw. 182 (2020) 107496, http://dx.
doi.org/10.1016/j.comnet.2020.107496.

[19] M. Messous, H. Sedjelmaci, N. Houari, S. Senouci, Computation offloading
game for an UAV network in mobile edge computing, in: 2017 IEEE
International Conference on Communications (ICC), 2017, pp. 1–6, http:
//dx.doi.org/10.1109/ICC.2017.7996483.

http://refhub.elsevier.com/S0167-739X(21)00235-1/sb1
http://refhub.elsevier.com/S0167-739X(21)00235-1/sb1
http://refhub.elsevier.com/S0167-739X(21)00235-1/sb1
http://refhub.elsevier.com/S0167-739X(21)00235-1/sb1
http://refhub.elsevier.com/S0167-739X(21)00235-1/sb1
http://dx.doi.org/10.3390/s18103571
http://dx.doi.org/10.3390/s18103571
http://dx.doi.org/10.3390/s18103571
http://dx.doi.org/10.1109/MedHocNet.2017.8001647
http://dx.doi.org/10.1109/MedHocNet.2017.8001647
http://dx.doi.org/10.1109/MedHocNet.2017.8001647
http://arxiv.org/abs/1906.08452
http://dx.doi.org/10.1109/LANMAN.2019.8847112
http://dx.doi.org/10.1109/LANMAN.2019.8847112
http://dx.doi.org/10.1109/LANMAN.2019.8847112
http://dx.doi.org/10.1016/j.comnet.2019.106877
http://dx.doi.org/10.1016/j.comnet.2019.106877
http://dx.doi.org/10.1016/j.comnet.2019.106877
http://www.sciencedirect.com/science/article/pii/S1389128618309034
http://www.sciencedirect.com/science/article/pii/S1389128618309034
http://www.sciencedirect.com/science/article/pii/S1389128618309034
http://dx.doi.org/10.1109/ICIN.2019.8685913
http://dx.doi.org/10.1109/COMST.2016.2560343
http://dx.doi.org/10.1109/COMST.2016.2560343
http://dx.doi.org/10.1109/COMST.2016.2560343
http://refhub.elsevier.com/S0167-739X(21)00235-1/sb9
http://refhub.elsevier.com/S0167-739X(21)00235-1/sb9
http://refhub.elsevier.com/S0167-739X(21)00235-1/sb9
http://refhub.elsevier.com/S0167-739X(21)00235-1/sb9
http://refhub.elsevier.com/S0167-739X(21)00235-1/sb9
http://dx.doi.org/10.1002/net.21818
http://dx.doi.org/10.1109/MCOM.2017.1600587CM
http://dx.doi.org/10.1109/MCOM.2017.1600587CM
http://dx.doi.org/10.1109/MCOM.2017.1600587CM
http://dx.doi.org/10.1109/ACCESS.2019.2938660
http://dx.doi.org/10.1109/ACCESS.2019.2938660
http://dx.doi.org/10.1109/ACCESS.2019.2938660
http://arxiv.org/abs/1902.05703
http://dx.doi.org/10.1109/TCYB.2019.2935466
http://dx.doi.org/10.1109/ISWCS.2018.8491089
http://dx.doi.org/10.1016/j.comnet.2020.107496
http://dx.doi.org/10.1016/j.comnet.2020.107496
http://dx.doi.org/10.1016/j.comnet.2020.107496
http://dx.doi.org/10.1109/ICC.2017.7996483
http://dx.doi.org/10.1109/ICC.2017.7996483
http://dx.doi.org/10.1109/ICC.2017.7996483

C. Qu, P. Calyam, J. Yu et al. Future Generation Computer Systems 125 (2021) 247–262
[20] P. Calyam, P. Chandrasekaran, G. Trueb, N. Howes, R. Ramnath, D.
Yu, Y. Liu, L. Xiong, D. Yang, Multi-resolution multimedia qoe models
for IPTV applications, Int. J. Digit. Multimedia Broadcast. 2012 (2012)
904072:1–904072:13.

[21] P. Calyam, M. Haffner, E. Ekici, C.-G. Lee, Measuring interaction qoe in
internet videoconferencing, in: IEEE/IFIP Management of Multimedia and
Mobile Networks and Services (MMNS), IEEE, 2007.

[22] L. Xie, et al., Discovering meaningful multimedia patterns with audio-
visual concepts and associated text, in: 2004 International Conference
on Image Processing, 2004. ICIP ’04, vol. 4, 2004, pp. 2383–2386, http:
//dx.doi.org/10.1109/ICIP.2004.1421580.

[23] K. Gatimu, et al., Experimental study of low-latency HD VoD streaming
using flexible dual TCP-udp streaming protocol, in: 2018 15th IEEE Annual
Consumer Communications Networking Conference (CCNC), 2018, pp. 1–6,
http://dx.doi.org/10.1109/CCNC.2018.8319234.

[24] K. Gatimu, A. Dhamodaran, T.T. Johnson, B. Lee, Experimental study of qoe
improvements towards adaptive HD video streaming using flexible dual
TCP-udp streaming protocol, Multimedia Syst. 26 (2020) 479–493.

[25] C. Kerrache, E. Barka, N. Lagraa, A. Lakas, Reputation-aware energy-efficient
solution for FANET monitoring, in: 2017 10th IFIP Wireless and Mobile
Networking Conference (WMNC), 2017, pp. 1–6, http://dx.doi.org/10.1109/
WMNC.2017.8248851.

[26] S. Li, J.G. Kim, D.H. Han, K.S. Lee, A survey of energy-efficient commu-
nication protocols with QoS guarantees in wireless multimedia sensor
networks, Sensors 19 (1) (2019) 199, http://dx.doi.org/10.3390/s19010199.

[27] J. Park, S. Choi, H.R. Hussen, J. Kim, Analysis of dynamic cluster head
selection for mission-oriented flying ad hoc network, in: 2017 Ninth
International Conference on Ubiquitous and Future Networks (ICUFN),
2017, pp. 21–23, http://dx.doi.org/10.1109/ICUFN.2017.7993740.

[28] F. Pedregosa, et al., Scikit-learn: Machine learning in python, J. Mach. Learn.
Res. 12 (2011) 2825–2830.

[29] Google Developers, The job shop problem | OR-tools | google
developers, 2019, https://developers.google.com/optimization/scheduling.
(Accessed August 2019),

[30] B. Boroujerdian, H. Genc, S. Krishnan, A. Faust, V.J. Reddi,
Why compute matters for UAV energy efficiency?, in: 2nd
International Symposium on Aerial Robotics, 2018, URL: https:
//storage.googleapis.com/pub-tools-public-publication-data/pdf/
162705e556829ec12b4e6e5261167bdf2de21d65.pdf.

[31] A. Gosavi, Reinforcement learning: A tutorial survey and recent advances,
INFORMS J. Comput. 21 (2) (2009) 178–192, http://dx.doi.org/10.1287/ijoc.
1080.0305, URL: https://doi.org/10.1287/ijoc.1080.0305.

[32] C. Qu, O. Opeoluwa, K. Gao, et al., DroneCOCoNet Project Source Code,
URL: https://github.com/CaesarQu/DroneCOCoNet.

[33] C. Qu, A.E. Morel, D. Dahlquist, P. Calyam, DroneNet-Sim: A learning-
based trace simulation framework for control networking in drone video
analytics, in: Proceedings of the 6th ACM Workshop on Micro Aerial
Vehicle Networks, Systems, and Applications, DroNet ’20, Association for
Computing Machinery, New York, NY, USA, 2020, http://dx.doi.org/10.
1145/3396864.3399705, URL: https://doi.org/10.1145/3396864.3399705.

[34] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You Only Look Once: Unified,
real-time object detection, in: IEEE Conference on Computer Vision and
Pattern Recognition, 2016, pp. 779–788.

[35] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, ImageNet: A large-scale
hierarchical image database, in: IEEE Conference on Computer Vision and
Pattern Recognition, 2009, pp. 248–255.

[36] P. Zhu, L. Wen, X. Bian, L. Haibin, Q. Hu, Vision meets drones: A challenge,
2018, arXiv preprint arXiv:1804.07437.

[37] A. Lukezic, T. Vojir, L. Cehovin Zajc, J. Matas, M. Kristan, Discriminative
correlation filter with channel and spatial reliability, in: IEEE Conference
on Computer Vision and Pattern Recognition, 2017, pp. 6309–6318.

Chengyi Qu received his B.S. degree from the Depart-
ment of Software Engineering at Northeast University,
China in 2016. He is currently a Ph.D. student in the
Department of Electrical Engineering and Computer
Science at the University of Missouri-Columbia. His
current research interests include distributed and cloud
computing, edge computing, computation offloading
methods, and drone video analytics.
261
Prasad Calyam received his M.S. and Ph.D. degrees
from the Department of Electrical and Computer Engi-
neering at The Ohio State University in 2002 and 2007,
respectively. He is currently an Associate Professor in
the Department of Electrical Engineering and Com-
puter Science at University of Missouri-Columbia and
directs the Virtualization, Multimedia and Networking
(VIMAN) Lab, as well as the Center for Cyber Education,
Research and Infrastructure. His current research inter-
ests include distributed and cloud computing, computer
networking, and cyber security. He is a Senior Member

of IEEE.

Jeromy Yu is pursuing his B.S. degree in Computer En-
gineering from Purdue University. His current research
interests include edge computing, embedded systems,
and application-specific integrated circuits.

Aditya Vandanapu is currently an undergraduate stu-
dent in the Department of Computer Science at the
University of Illinois at Chicago. His current research
interests include mobile edge computing, and machine
learning applications in cloud computing.

Osunkoya Opeoluwa received his M.S. degree in Com-
puter Science from the University of Missouri-Columbia
in 2019, and his B.S. degree in Computer Science
from Covenant University-Ota, Nigeria in 2011. His
current research interests include natural language
understanding, deep learning and systems design.

Ke Gao received his M.S. degree in electrical engi-
neering from the University of Missouri-Columbia, and
the B.S. degree in electrical engineering from Henan
University of Science and Technology, China. He is
currently a doctoral student in University of Missouri-
Columbia. His research interests include visual object
tracking, feature detection and matching for wide area
motion imagery, digital image processing and analysis
for plant morphometry.

Songjie Wang received his M.S. from the Department
of Computer Science at the University of Missouri-
Columbia in 2018, and a Ph.D. degree in Plant Science
from University of Missouri-Columbia in 2008. He
received his BS degree in Biology from the Nanjing
University, China in 1999. He is currently a CyberIn-
frastructure Engineer in the Center for Cyber Education,
Research and Infrastructure at University of Missouri-
Columbia. His current research interests include cloud
computing, Internet-of-Things, cyber security, and data
science.

http://refhub.elsevier.com/S0167-739X(21)00235-1/sb20
http://refhub.elsevier.com/S0167-739X(21)00235-1/sb20
http://refhub.elsevier.com/S0167-739X(21)00235-1/sb20
http://refhub.elsevier.com/S0167-739X(21)00235-1/sb20
http://refhub.elsevier.com/S0167-739X(21)00235-1/sb20
http://refhub.elsevier.com/S0167-739X(21)00235-1/sb20
http://refhub.elsevier.com/S0167-739X(21)00235-1/sb20
http://refhub.elsevier.com/S0167-739X(21)00235-1/sb21
http://refhub.elsevier.com/S0167-739X(21)00235-1/sb21
http://refhub.elsevier.com/S0167-739X(21)00235-1/sb21
http://refhub.elsevier.com/S0167-739X(21)00235-1/sb21
http://refhub.elsevier.com/S0167-739X(21)00235-1/sb21
http://dx.doi.org/10.1109/ICIP.2004.1421580
http://dx.doi.org/10.1109/ICIP.2004.1421580
http://dx.doi.org/10.1109/ICIP.2004.1421580
http://dx.doi.org/10.1109/CCNC.2018.8319234
http://refhub.elsevier.com/S0167-739X(21)00235-1/sb24
http://refhub.elsevier.com/S0167-739X(21)00235-1/sb24
http://refhub.elsevier.com/S0167-739X(21)00235-1/sb24
http://refhub.elsevier.com/S0167-739X(21)00235-1/sb24
http://refhub.elsevier.com/S0167-739X(21)00235-1/sb24
http://dx.doi.org/10.1109/WMNC.2017.8248851
http://dx.doi.org/10.1109/WMNC.2017.8248851
http://dx.doi.org/10.1109/WMNC.2017.8248851
http://dx.doi.org/10.3390/s19010199
http://dx.doi.org/10.1109/ICUFN.2017.7993740
http://refhub.elsevier.com/S0167-739X(21)00235-1/sb28
http://refhub.elsevier.com/S0167-739X(21)00235-1/sb28
http://refhub.elsevier.com/S0167-739X(21)00235-1/sb28
https://developers.google.com/optimization/scheduling
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/162705e556829ec12b4e6e5261167bdf2de21d65.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/162705e556829ec12b4e6e5261167bdf2de21d65.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/162705e556829ec12b4e6e5261167bdf2de21d65.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/162705e556829ec12b4e6e5261167bdf2de21d65.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/162705e556829ec12b4e6e5261167bdf2de21d65.pdf
http://dx.doi.org/10.1287/ijoc.1080.0305
http://dx.doi.org/10.1287/ijoc.1080.0305
http://dx.doi.org/10.1287/ijoc.1080.0305
https://doi.org/10.1287/ijoc.1080.0305
https://github.com/CaesarQu/DroneCOCoNet
http://dx.doi.org/10.1145/3396864.3399705
http://dx.doi.org/10.1145/3396864.3399705
http://dx.doi.org/10.1145/3396864.3399705
https://doi.org/10.1145/3396864.3399705
http://arxiv.org/abs/1804.07437

C. Qu, P. Calyam, J. Yu et al. Future Generation Computer Systems 125 (2021) 247–262

w
M

Raymond Chastian is pursuing his M.S. degree in Com-
puter Science at the University of Missouri-Columbia.
He is currently a software developer in the Cen-
ter for Geospatial Intelligence at the University of
Missouri-Columbia. His current research interests in-
clude geospatial intelligence, network programming,
wireless channel analysis and geospatial science.
262
Kannappan Palaniappan received his Ph.D. from the
University of Illinois at Urbana–Champaign, and MS and
BS degrees in Systems Design Engineering from the
University of Waterloo, Canada. He is a Full Professor
in the Department of Electrical Engineering and Com-
puter Science at the University of Missouri-Columbia.
He directs the Computational Imaging and VisAnalysis
(CIVA) Lab. His research is at the synergistic inter-
section of image and video big data, computer vision,
high performance computing and artificial intelligence
to understand, quantify and model physical processes

ith applications to biomedical, space and defense imaging. He is a Senior
ember of IEEE.

	DroneCOCoNet: Learning-based edge computation offloading and control networking for drone video analytics
	Introduction
	Related work
	DroneCOCoNet framework
	Framework overview for drone video analytics
	Computation offloading (CO)
	Control networking (CoNet)

	Computation offloading in drone video analytics
	Supervised learning based job scheduling
	Problem background
	Heuristic job scheduling algorithm

	Reinforcement learning based job scheduling
	Problem background
	RL-based job scheduling algorithm

	Control networking in drone video analytics
	Protocols background
	Use cases for network protocol selection
	Resource-aware protocol selection algorithm
	QUICer: Application pipeline data movement acceleration
	QUICer implementation
	Application pipeline integration

	Performance evaluation
	Evaluation setup
	Heuristic based scheduling results
	Reinforcement learning based scheduling results
	QUICer based control networking results

	Conclusion
	Declaration of competing interest
	Acknowledgments
	References

