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ABSTRACT

Visual odometry has gained increasing attention due to the
proliferation of unmanned aerial vehicles, self-driving cars,
and other autonomous robotics systems. Landmark detec-
tion and matching are critical for visual localization. While
current methods rely upon point-based image features or de-
scriptor mappings we consider landmarks at the object level.
In this paper, we propose LMNet a deep learning based land-
mark matching pipeline for city-scale, aerial images of ur-
ban scenes. LMNet consists of a Siamese network, extended
with a multi-patch based matching scheme, to handle off-
center landmarks, varying landmark scales, and occlusions of
surrounding structures. While there exist a number of land-
mark recognition benchmark datasets for ground-based and
nadir aerial or satellite imagery, there is a lack of datasets
and results for oblique aerial imagery. We use a unique un-
supervised multi-view landmark image generation pipeline
for training and testing the proposed matching pipeline us-
ing over 0.5 million real landmark patches. Results for aerial
landmark matching across four cities show promising results.

Index Terms— Landmark matching, aerial surveillance,
deep learning, geolocalization, visual SLAM

1. INTRODUCTION

Visual localization using foundational geospatial data is a crit-
ical component for place recognition, navigation, and loop
closure or path recovery in environments where sensor meta-
data may be noisy and intermittent. With the recent prolifera-
tion of unmanned aerial vehicles, self-driving cars, and other
autonomous robotics systems, there is a growing need for vi-
sual localization capabilities. Visual localization [1] aims to
identify a query image within a geo-referenced collection that
can consist of a single image, a set of images, or a 2D/3D
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model of the scene and enables robust operation even when
platform and sensor metadata are noisy or sporadic. Instead
of the typical low-level image feature-based approach we con-
sider an object level landmark-based method for visual local-
ization. Landmark matching in urban scenarios, however, is
challenging due to non-distinctive, repetitive structures such
as rooftops of houses or windows of tall buildings; scene clut-
ter; varying sized landmarks; appearance changes caused by
differences in time of day, in viewing direction, occlusions
and view-dependent uncovering of different structures sur-
rounding tall buildings. Landmark identification is even more
difficult in oblique aerial imagery as tall landmarks undergo a
high degree of perspective change between widely separated
directional views. Until the recent advances in deep learn-
ing, image matching was predominantly performed by fea-
ture point detection and matching using carefully designed
feature detectors and descriptors [2]. While these classical ap-
proaches produce satisfactory results for image pairs captured
from similar viewing directions, their performances severely
deteriorate with larger viewing angles (nadir vs oblique) or
with repetitive structures. Inspired by the multi-level abstrac-
tion capabilities of deep learning methods and their recent
success in matching [3, 4, 5, 6, 7, 8, 9, 10] , we have devel-
oped a novel object level landmark matching pipeline suitable
for visual odometry, with the core consisting of a single-patch
Siamese network [11, 12]. In order to handle varying scale
of landmarks and occlusions from surrounding structures, we
extended the single-patch pipeline to a multi-patch ensemble.
Based on our work in bundle adjustment [13, 14, 15] and city-
scale 3D reconstruction [16, 17], we also developed a 3D en-
abled, unsupervised, training data generation pipeline.

2. DEEP LEARNING-BASED LANDMARK
MATCHING USING LMNET

We have designed a deep learning-based landmark matching
pipeline for city-scale, aerial images of urban scenes. Our
LMNet deep architecture consists of a Siamese network with
a ResNet [18] feature extraction backbone described in §2.2.
In order to handle multi-scale landmarks and occlusions from
surrounding background structures, we extended our single-



Fig. 1: 3D enabled multi-view landmark image generation: (a) 3D city-scale reconstruction using ABQ WAMI dataset; (b) rendered 3D
point cloud (blue to red for low to high elevations); (c) orthographic view of RGB point cloud; (d) tall buildings automatically identified as
landmarks of interest in orthographic view (grayscale height map); and, (e) two tall buildings visualized using MU Nimbus2 3D software.

Fig. 2: Forward projection from 3D real-world coordinates to high-
resolution 2D image sequence for different camera viewing direc-
tions using bundle adjusted camera poses.

patch pipeline to a multi-patch ensemble. The pipeline was
trained with a set of matching and non-matching image pairs.
Unsupervised aerial landmark training data from several cities
were generated in a scalable manner as described next.

2.1. 3D enabled multi-view landmark image generation

Success of supervised deep learning approaches critically
depends upon the availability of large amounts of labeled
training data. Such datasets are lacking for aerial landmark
matching. Based on our prior work in bundle adjustment
[13, 14, 15] and city-scale 3D reconstruction [16, 17], we
have developed an unsupervised training data generation
pipeline for landmark matching. Major steps of this pipeline
are shown in Algorithm 1 and illustrated in Figures 1 and
2. To generate the training and testing data for our pro-
posed landmark matching pipeline, we used wide-area mo-

Algorithm 1 3D enabled multi-view landmark image gener-
ation for unsupervised training data

1. Bundle adjustment [13, 14, 15] (Fig. 1a)

2. City-scale 3D model reconstruction [16, 17] (Fig. 1b)

3. City-scale orthographic view and height map generation from
3D model (Fig. 1c-d)

4. Automatic landmark detection from height map (Fig. 1e)

5. Identification of landmark 3D real-world coordinates

6. Forward projection: 3D coordinates to high-resolution 2D
image sequence using bundle adjusted camera poses (Fig. 2)

7. Visibility check: ray-tracing + 3D local neighborhood search

tion imagery (WAMI) [19] data with known camera poses
and corresponding 3D point clouds. These WAMI data were
captured using high-resolution visible RGB cameras, to-
gether with consumer-level quality metadata from noisy GPS
and IMU sensors associated with each camera view that are
corrected using our Structure-from-Motion and bundle ad-
justment algorithm, called BA4S [13]. BA4S receives the
image sequences as input along with the noisy camera po-
sition vectors (GPS) and rotation angles (IMU). It uses a
robust and very fast method to optimize the camera poses
(the positions and orientations) by using a non-linear least-
squares solver (Levenberg-Marquardt) algorithm together
with a robust function which is able to efficiently handle
strong parallaxes [20] induced by tall 3D structures and
building in WAMI scenarios. Having the camera poses opti-
mized, dense city-scale 3D point clouds were reconstructed
using the multi-view WAMI [16]. A reconstructed city-scale
model is shown in Figure 1. Using the 3D point cloud re-
construction, a height map (Figure 1b) and an orthographic
view (Figure 1c) of the urban area scene were constructed.
Tall structures (landmarks) were automatically located by
thresholding the height map and are marked by red circles in
Figures 1d and 1e. The spatial positions of these tall struc-
tures combined with their corresponding heights constitute
their 3D real-world coordinates. To obtain different views
of the same landmark, the 3D coordinates of the landmark
rooftops were forward projected to the high-resolution 2D
sequence of images (Figure 2) using bundle adjusted camera
poses, comprised of the rotation matrix Ri and translation
vector ti for the ith camera or view,

xj = K [Ri|ti]Xj (1)

where Xj is the 3D (homogeneous) coordinate of the jth

landmark, xj is its associated 2D pixel (homogeneous) co-
ordinate in the ith camera view and K is the camera intrinsic
matrix assumed to be the same for all views.

2.2. Landmark matching using a Siamese network

The proposed pipeline uses a Siamese network to infer
whether a given pair of image patches correspond to the



Fig. 3: Proposed LMNet multi-view landmark matching architec-
ture consisting of a deep learning Siamese matching network and
a multi-patch match analysis module that compensates for center-
offset, scale difference and occlusions of the landmark of interest.

same landmark or not. The network consists of two parts,
image patch feature extraction streams that share weights
followed by a binary classifier. Feature extraction uses two
pre-trained ResNet50 architectures, whose outputs are con-
nected to a pair of fully connected (FC) layers. These outputs
are vertically concatenated, then projected to two fully con-
nected layers, to decide on match versus no-match binary
classification. The network terminates with a sigmoid layer
and is minimized using binary cross entropy loss,

L(y, p) = −
∑
i

(yi log(pi) + (1− yi) log(1− pi)) (2)

where yi is the binary indicator for the predicted class label (1
for incorrect classification) and pi is the predicted probability
for a matching patch summed over all landmark patches in
the mini-batch. Matching pairs were selected from different
views of the same landmark using 3D enabled forward pro-
jection as described in Algorithm 1 and shown in Figure 2.
Multiple matching pairs were created for each landmark in an
unsupervised manner. Matching pairs were grouped based on
the camera viewing direction angle differences. Three clus-
ters were created for angles differences of (0◦- 15◦], (15◦-
30◦], and (30◦- 45◦]. Non-matching pairs are created by pair-
ing views of different landmarks from the same city.

2.3. Multi-patch matching scheme

Matching landmarks across different views is a challenging
task. Different views not only result in appearance changes
in the landmark of interest, but also in the surrounding back-
ground structures. In order to reduce the adverse effects on
matching performance of: (1) off-center landmarks, (2) small
landmarks, and (3) occlusions due to surrounding structures,
we developed a multi-patch matching scheme. This scheme
aims to reduce false-negatives (mis-classification of match-
ing pairs) and is activated only when the network output is
the non-matching class. The proposed multi-patch matching
scheme then extracts nine 300×300 neighboring sub-patches

Table 1: Characteristics of aerial imagery. BK landmarks were
used only for testing. Height threshold for building masks was 75.

City Number Angle btw # Training # Testing
of views views (degree) landmarks landmarks

LA 351 0.975 28 13
ABQ 429 1.190 27 9
SYR 295 0.819 19 9
BK 220 0.611 0 34

from the query and reference image patches as shown in Fig-
ure 4. The sub-patches are resized and fed to the Siamese
network (Section 2.2) to generate 9 × 9 comparisons. A pair
of landmark images is considered a match when K or more
tests (out of 81) are of the matching class.

Fig. 4: Multi-patch matching scheme. Left: Original image patch
with locations of 9 sub-patches marked as colored dots and 3 patches
shown. Right: Nine cropped sub-patches centered on colored dots.

2.4. Estimation of inter-view angles

Two variations of the LMNet in Figure 3 were developed
to estimate the viewing angle differences between matching
landmark image patches. The problem can be formulated
as a classification or regression problem. Several modifica-
tions were made to convert the LMNet landmark matching
network described in §2.2 to an angle estimation network. In
the regression-based extension, the final network layer was
modified to produce a single output optimized using a mean-
squared error loss function. In the classification-based exten-
sion the angle between views was binned into three classes:
(0◦, 10◦], (10◦, 20◦], and (20◦, 30◦]. The final network layer
was modified to output 3 classes using softmax and optimized
using the cross-entropy loss function. See Table 3 for results.

3. EXPERIMENTAL RESULTS

WAMI data was collected by Transparent Sky, LLC using an
aircraft with on-board GPS and IMU measurements in a cir-
cular flight pattern. Table 1 summarizes the dataset informa-
tion. Landmark patch sizes are resized to 500 × 500 pix-
els. The proposed pipeline was trained with landmarks from
LA, ABQ, SYR, then tested on separate landmarks from LA,



Table 2: Single-patch and multi-patch landmark matching accuracies. TN & TP refer to true negative and positive rates. Results organized
by aerial dataset, non-matching & matching image pairs, and angle between views. Multi-patch results use a matching threshold of K = 40.

Aerial Dataset Non-Matching Image Pairs - (TN) Matching Image Pairs (TP)
Angle between views (0◦,15◦] (15◦,30◦] (30◦,45◦] (0◦,15◦] (15◦,30◦] (30◦,45◦]

Single-Patch

Albuquerque, NM 94.03% 94.11% 94.11% 98.17% 81.79% 70.00%
Los Angeles, CA 81.90% 81.83% 81.70% 98.95% 89.30% 79.52%
Syracuse, NY 93.91% 93.82% 94.15% 98.13% 80.78% 70.08%
Berkeley, CA 91.41% 91.31% 91.44% 98.46% 80.82% 66.05%

Multi-Patch

Albuquerque, NM 93.89% 93.93% 89.24% 98.24% 82.32% 87.02%
Los Angeles, CA 76.26% 76.21% 57.30% 99.12% 92.29% 95.86%
Syracuse, NY 93.44% 93.40% 87.78% 98.99% 89.30% 95.74%
Berkeley, CA 90.05% 89.92% 79.78% 98.85% 85.15% 91.69%
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Fig. 5: Effect of multi-patch match threshold K on match accuracy
for multi-patch landmark matching compared to single-patch results
(horizontal lines since thresholding does not apply).

ABQ, SYR, BK datasets. BK was the held out dataset and
was not used for training. In total, 142,272 matching and
143,627 non-matching image patch pairs were used for train-
ing. Another 262,212 image patch pairs were used for testing.

Table 2 shows landmark matching accuracies for single-
patch and multi-patch matching schemes. Results on unseen
BK dataset demonstrates the generalization capabilities of the
landmark matching deep network. When the global single-
patch scheme is used, correct classification of non-matching
image pairs is not affected by the viewing direction. How-
ever, classification accuracies for matching image pairs (TP)
decreases significantly by 27.0% (averaged over four cities)
for large viewing angle differences of 30◦ to 45◦, compared
to narrow viewing angles of 0◦ to 15◦, due to large perspec-
tive appearance changes between the views. Using the multi-
patch matching scheme, accuracy improves significantly for
large viewing differences of 30◦ to 45◦, resulting in only a
6.2% decrease in accuracy for matching image pairs (TP),
combined with a 9.9% decrease in accuracy for non-matching
pairs (TN), due to false-positives introduced by multi-patch
matching. Overall multi-patch landmark matching provides
a net benefit. Figure 5 shows the difference in performance
between single- and multi-patch matching methods and the
influence of threshold K on the latter. For large K accu-

Table 3: View separation angle estimation across different cities.
Angle estimation error threshold for regression is set to ±5◦.

LA ABQ SYR BK Overall
Regression 91.49 98.12 83.53 94.08 92.60
Classification 71.34 81.50 68.28 75.75 74.57

racy converges to the global single-patch matching scheme.
For low values of K, matching accuracies for viewing direc-
tions 0◦ to 15◦decrease due to increased false-positives. The
highest matching accuracy was obtained using a threshold for
K ∈ [20, 40] which corresponds to 25% to 50% of the 81
comparisons between two sets of 3× 3 sub-patches (see Fig-
ure 4). For these cases, false-negatives decrease for viewing
directions of 30◦ to 45◦. When viewing directions can be es-
timated, the match threshold K can be set to optimize perfor-
mance. Table 3 shows accuracy for viewing direction estima-
tion. The regression network has a 92% estimation accuracy
which outperforms the classification based method by 18%.

4. CONCLUSIONS
In this paper, we proposed a deep learning based landmark
matching pipeline, LMNet, for city-scale, aerial images of ur-
ban scenes. LMNet is composed of a Siamese network with
a ResNet feature extraction sub-network, with a novel multi-
patch matching scheme used to handle off-center landmarks,
varying scale of landmarks, and occlusion from surrounding
structures. LMNet uses multi-level abstraction capabilities of
deep learning methods to capture regional scene information
using multi-patch image sets for robust landmark matching.
LMNet is trained in an unsupervised manner using our 3D-
enabled multi-view landmark image patch generation, which
allowed us to generate a large number of matching multi-view
image patches without manual labeling. Experiments on data
from four cities, Los Angeles, Albuquerque, Syracuse, and
Berkeley show an average recognition accuracy of nearly 90%
for aerial landmark matching. The output of this method can
be used to initialize a 3D-2D (PnP) or 2D-2D camera pose
estimation algorithms within a visual navigation framework.
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