IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 33, NO. 2, FEBRUARY 2014

577

Lung Segmentation in Chest Radiographs Using
Anatomical Atlases With Nonrigid Registration

Sema Candemir*, Stefan Jaeger, Kannappan Palaniappan, Jonathan P. Musco, Rahul K. Singh, Zhiyun Xue,
Alexandros Karargyris, Sameer Antani, George Thoma, and Clement J. McDonald

Abstract—The National Library of Medicine (NLM) is devel-
oping a digital chest X-ray (CXR) screening system for deployment
in resource constrained communities and developing countries
worldwide with a focus on early detection of tuberculosis. A crit-
ical component in the computer-aided diagnosis of digital CXRs
is the automatic detection of the lung regions. In this paper, we
present a nonrigid registration-driven robust lung segmentation
method using image retrieval-based patient specific adaptive lung
models that detects lung boundaries, surpassing state-of-the-art
performance. The method consists of three main stages: 1) a
content-based image retrieval approach for identifying training
images (with masks) most similar to the patient CXR using a
partial Radon transform and Bhattacharyya shape similarity
measure, 2) creating the initial patient-specific anatomical model
of lung shape using SIFT-flow for deformable registration of
training masks to the patient CXR, and 3) extracting refined
lung boundaries using a graph cuts optimization approach with
a customized energy function. Our average accuracy of 95.4%
on the public JSRT database is the highest among published
results. A similar degree of accuracy of 94.1% and 91.7% on
two new CXR datasets from Montgomery County, MD, USA,
and India, respectively, demonstrates the robustness of our lung
segmentation approach.

Index Terms—Chest X-ray imaging, computer-aided detection,
image registration, image segmentation, tuberculosis (TB).
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I. INTRODUCTION

ETECTING the lung regions in chest X-ray images is

an important component in computer-aided diagnosis
(CAD) of lung health. In certain diagnostic conditions the rele-
vant image-based information can be extracted directly from the
lung boundaries without further analysis. For example, shape
irregularity, size measurements, and total lung volume [1], [2]
provide clues for serious diseases such as cardiomegaly [3],
[4], pneumothorax, pneumoconiosis, or emphysema [5]-[7].
In the case of CAD-based identification of lung diseases,
accurate lung boundary segmentation plays an important role
in subsequent stages of automated diagnosis [8]-[10].

The National Library of Medicine, in collaboration with In-
diana University School of Medicine, AMPATH (The Academic
Model Providing Access to Healthcare), is developing a com-
puter-aided system for screening and detecting the pulmonary
pathologies in chest radiographs. This system is being devel-
oped as part of a project aimed at screening of tuberculosis (TB)
patients in regions of the world with high incidence of disease
but inadequate healthcare facilities. The initial screening region
will be rural areas of western Kenya, using light weight portable
X-ray scanners. The shortage of radiological infrastructure and
radiologists in rural areas of Kenya necessitates an automated
TB screening approach in such resource constrained regions.

One of the important steps in automatic analysis of chest
X-ray images is to detect the lung boundaries accurately. There
are a number of anatomical challenges and subtle cues involved
in segmenting the lung region within a CXR. For example,
for lung segmentation, the strong edges at the rib cage and
clavicle region results in local minima in many minimization
approaches. Segmenting the lung apex is another difficult
problem because of the varying intensities in the upper clavicle
bone region. Additional challenges include segmenting the
small costophrenic angle, making allowances for anatomical
shape variations such as varying heart dimensions or other
pathology, and X-ray imaging inhomogeneities. Fig. 1 shows
some examples of such variations in lung appearance.

In this paper, we present a lung boundary detection system
incorporating nonrigid registration with a CXR database of pre-
segmented lung regions to build an anatomical atlas as a guide
combined with graph cuts based image region refinement. We
presented a preliminary version of this paper in [11] and [12].
The initial work is significantly expanded in this paper to in-
corporate a deformable anatomical lung model using a novel
nonrigid registration approach based on SIFT-flow, a detailed
assessment of the approach compared to other state-of-the-art
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Fig. 1. Anatomical features in two chest X-ray images and their variations.
Differing lung shape, strong edges of the rib cage, visible shape of the heart,
intensity variation around the clavicle bones and sharp corner at costophrenic
angle that challenge automated segmentation algorithms. Both X-ray images are
from the India dataset (see Section IV-A).

methods using the validated Japanese Society of Radiological
Technology (JSRT) dataset [13], and further experimental vali-
dation of the approach using two additional CXR databases.

A. Related Research in Lung Boundary Segmentation

Over the past decade, a number of research groups have
worked on chest X-ray analysis, and various methods have been
proposed for lung boundary segmentation. Ginneken et al. [14]
classified the early segmentation methods for chest X-rays into
roughly four categories: 1) rule based methods, 2) pixel classi-
fication-based methods, 3) deformable model-based methods,
and 4) hybrid methods. Our method is a hybrid approach to
detect, register and robustly segment lung organ boundaries
across a large patient population. We survey some of the recent
results in X-ray image based lung segmentation; earlier work
in computer analysis of chest X-ray images is covered in [14]
and more recent work in [15].

Rule-based segmentation methods [16] contain sequences of
steps and rules such as thresholding or morphological opera-
tions. These methods have mostly heuristic assumptions and
compute approximate solutions that can be far from the global
optimum. Therefore, they are generally used as an initialization
stage of more robust segmentation algorithms [17].

Pixel classification-based methods are more general than
rule-based methods. They mainly model the intensities of
inside and outside of the lung regions, and classify the image
pixels into either object (lung field) or background [18]-[20],
[15], [17].

Deformable models have been extensively studied and used
in medical image segmentation because of their shape flexi-
bility. Active shape models (ASM) [21] and active appearance
models (AAM) [22] have been successfully applied to lung re-
gion segmentation [23], [24], [15], [25]-[27]. Although active
shape and appearance modeling approaches have become pop-
ular for biomedical applications, they have several limitations
and shortcomings including: 1) they can become trapped at local
minima in chest X-rays due to high contrast and strong rib cage
edges, 2) segmentation performance relies on the approxima-
tion accuracy of the initial model, and 3) they have many in-
ternal parameters which produces highly variable solutions. For
example, the two implementations of ASM in [15] and in [25]
produced significantly different results on the same dataset be-
cause of the free parameters in the scheme. Extensions of ASMs
for lung field segmentation are actively being investigated [27],
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[25], [28], [29] in order to overcome these limitations. For ex-
ample, in [30], a shape particle filtering approach is used to pre-
vent getting trapped at local minima. Another recent effort uses
SIFT descriptors and a shape representation utilizing both pop-
ulation-based and patient-specific shape statistics for matching
serial images of the same patient [25]. A modified ASM ap-
proach presented in [31] optimizes shape and intensity charac-
teristics simultaneously during ASM iterations. In addition, a
similar effort in [26] incorporates global edge and region forces
as part of the objective function to reach the global minimum.

Hybrid methods aim to produce better results by fusing
several techniques. In [32], a rule-based and a pixel-based ap-
proach are combined. In [15], researchers propose three hybrid
approaches, fusing deformation-based (active shape model,
active appearance model) and pixel classification methods by
choosing the best performing approach using majority voting.
In [8], the lung region is extracted using a combination of an
intensity mask, a lung model mask derived from a training set,
and a Log-Gabor mask. Recently, a new algorithm has been pro-
posed for emphysema detection, in which the lung boundaries
are modeled as a closed fuzzy-curve. The fuzzy-membership is
estimated with Kohonen networks [7].

B. System Overview and Our Contribution

We propose a robust automated lung segmentation system
for chest X-ray images. Our method shown in Fig. 2 consists
of three main stages. First we use a content-based image re-
trieval approach to identify a small set of lung CXR images that
are most similar to the patient X-ray using partial Radon trans-
forms combined with a Bhattacharyya similarity measure. The
partial Radon transform based retrieval method is fast and can
accommodate small affine distortions in the CXR. The highly
ranked lung images retrieved by this method are usually a good
fit for the patient lung and is a successful application of medical
CBIR methods to anatomical atlas construction. After ranking,
we compute an anatomically guided patient-specific lung model
by warping the training database of chest X-rays to the patient
X-ray using a state-of-the art deformable registration algorithm
[33]. Finally, the lung boundaries are determined using a graph
cuts discrete optimization approach [34]-[36], [11] with a cus-
tomized energy function. The graph cuts energy function in-
cludes a novel anatomical atlas shape prior term that ensures
close adherence to normal lung anatomy.

In order to estimate an approximate lung model, we employ
a deformable registration method that solves the alignment
process in an energy minimization framework. It first calculates
the corresponding pixels between training and patient X-ray
which provides the transformation mapping for each pixel.
Then it aligns the training masks using the transformation map-
ping. We use the average of warped masks as a lung atlas model
for the patient. Registration follows content-based ranking and
selection from the training database in order to speed up the
overall segmentation algorithm, since nonrigid registration is
computationally expensive. Finally, our system detects the lung
boundaries with a segmentation algorithm. We use the graph
cuts algorithm, which models the segmentation process using
an objective function in terms of boundary, region, and lung
model properties. The graph cuts algorithm computes a global
binary segmentation by minimizing the objective function.
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Fig.2. CBIR inspired work flow with nonrigid registration for identifying lung boundaries. The system consists of three stages: Stage-I) finding lung atlases similar
to the patient X-ray using profile-based Bhattacharya similarity measures, Stage-II) computing a patient specific lung model by warping the training database of
chest X-rays to the patient X-ray using the the SIFT-flow registration algorithm, and Stage-III) lung boundary detection using a graph cuts optimization approach

with a customized energy function.

Although active shape and appearance models are popular
for segmenting anatomical parts, we show that our graph cuts
approach does not get trapped at local minima and outperforms
these methods.

The proposed system combines two state-of-the-art algo-
rithms in a novel manner for organ segmentation in radiograph-
ical images. Both algorithms model the deformable registration
and segmentation processes in an energy minimization frame-
work. We test the system on three challenging datasets, one
of which has been publicly available and widely used in the
literature (JSRT). We use two additional CXR datasets from
Montgomery County, MD, USA, and India, which we are
making publicly available to the research and clinical commu-
nities to improve lung segmentation algorithms for regions of
the world where pulmonary diseases such as TB remains an
endemic health concern. These are the first new datasets for
CXR lung segmentation application since the JSRT became
available more than a decade ago, as well as the first to include
abnormal lung boundaries and the first publicly available CXR
datasets specifically for TB screening.

The paper is structured as follows. Section II, describes how
the lung model is calculated using the deformable registration
algorithm. In Section III, we first give the basic terminology of
the graph cuts method and then describe the segmentation algo-
rithm in detail. Section IV provides a description of the datasets
and experimental results. Conclusions are given in Section V.

II. PATIENT-SPECIFIC STATISTICAL LUNG ATLAS MODEL
USING NONRIGID REGISTRATION

Segmentation in medical imaging poses a number of chal-
lenges including multiplicative noise, motion during imaging,
sampling artifacts caused by the acquisition equipment, low
contrast, deformation of tissues and anatomical shape varia-
tions due to normal anatomy and disease. Therefore, classical
segmentation techniques, which make simplifying assumptions
of rigid motion or additive noise for example, and do not use
a priori information, usually produce unsatisfactory results
on medical images. In order to provide a priori information
for improved segmentation, we incorporate a lung atlas model
into the system. Since the X-ray images contain variable lung
shapes, a static model is not sufficient to describe the lung
regions. Our system therefore estimates a statistical model for
each patient X-ray using a training set of segmented images

(atlases) to identify the most similar images followed by a non-
rigid registration algorithm to warp the most similar training
masks to the patient CXR.

A. CBIR Paradigm for Inter-Patient Matching

We first identify a small subset of images (i.e., five) in the
training database that are most similar to the patient query
image, using a content-based image retrieval (CBIR) inspired
approach, and use this subset of training images including
corresponding lung masks to develop a patient-specific lung
model. Using a small subset of images from the database is
sufficient to build an accurate lung model while significantly
speeding up the step of nonrigid registration between the
training and the patient query images. Ranking precedes regis-
tration, otherwise we would need to extract SIFT features and
compute SIFT-flow deformable registration models for every
image in an extensive training database which is prohibitively
expensive and impractical for a fieldable system.

Unlike other patient-specific lung models in the literature that
use intra-patient image information [25], we develop an inter-
patient matching and image retrieval system that follows the
CBIR paradigm to guide segmentation. CBIR systems are de-
signed to be fast for online retrieval applications with an offline
preprocessing step to extract signature features for each image
in the database [37]-[39] and can incorporate multimodal infor-
mation to improve precision [40]. CBIR systems usually pro-
duce a ranked subset of images most similar to the query which
in our case is a new patient CXR image. We assume that the
CXR database has been appropriately preprocessed and consists
of globally aligned and normalized CXRs.

We use partial Radon transforms, or orthogonal projection
profiles, to compare and rank the similarity between two pa-
tient’s lung images. The Radon transform projection along an
arbitrary line in the x-y plane is defined as

R(p,9) = // Iz, y)b6(p — zcost —ysin@dedy (1)

where 6( - ) is the 2-D impulse function

// §(z,y)dedy =1 2)
and has the shifting property
// I(z,y)6(x — w0,y — yo)dzdy = I(z0,0) (3)
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with

6(L/y):{00 lfL:y:() (4)

0, otherwise

The Radon transform computes a projection of the image as
a sum of line integrals accumulating pixel intensities along rays
defined by p = xcosf + ysin b in the z-y plane. Instead of
a complete set of 360° angles, we use a small subset of angles
which we refer to as the partial Radon transform and use these
few projections for image matching and similarity assessment.
The partial Radon transform projection method is fast to com-
pute and only an approximate matching atlas set of lung seg-
mentations from the CXR database is needed to compute a spa-
tial prior that can be refined in the subsequent phase of the al-
gorithm. Our X-ray sets contain only a small number of slightly
rotated images. Therefore, in the experiments two orthogonal
projections, horizontal and vertical, are sufficient to accommo-
date small patient rotations around the projection axis and trans-
lations in the CXR. Large image rotations and shears can result
in a higher degree of global alignment mismatch between the pa-
tient CXR and the normalized set of CXRs in the database. Input
images with large rotations can be dealt with by using a larger
number of projections in the Radon transform at a slightly in-
creased computational cost. Such rotation in X-rays can be also
calculated using rib cage or clavicle bone direction [41], [42],
[15].

The horizontal and vertical projection profiles are precom-
puted for all images in the training database to speed up the
CBIR search process. We first calculate the intensity projection
of the histogram-equalized images in the vertical and the hori-
zontal directions. Then we measure the similarity of each pro-
jection profile between the atlas database and the patient chest
X-ray using the average Bhattacharyya coefficient

BC(I1, I) = « Z p1(7)pa(2)

-0 Va@em ©

where p1 () and pa(z) are the horizontal projections, ¢ (%) and
q2(y) are the vertical projections of images I; and /5, respec-
tively, z and y are the histogram bins of the projection pro-
files, » and m are the number of bins in the profile histograms,
and &« = n/(n + m) is the relative weight for each profile;
when n = m, o = 1/2. Fig. 3 demonstrates the horizontal and
vertical profile histograms of two example images. The Bhat-
tacharyya coefficient measures the overlap between two distri-
butions and ranges between zero and one. It is easy to interpret
and fast to compute. Other metrics between histograms such as
entropy or cross correlation could be used to measure the de-
gree of similarity between the patient X-ray and the atlas. But
these are computationally more expensive compared to the par-
tial Radon transform, which just involves integer sums.

We select a set of best fit training atlases from the anatom-
ical database of segmented lung images to learn a patient spe-
cific lung model. The registration performance is significantly
improved when a personalized lung model is designed by com-
paring the patient X-ray with presegmented lung images in the
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Fig. 3. Plots show the Radon transform profiles for a query and database image,
for p;(z) = R(p,0 = 0°), left image, and ¢;(y) = R(p,8 = 90°), for the
right image.

CXR database using a fast shape similarity measure based on
partial Radon transforms.

B. SIFT-Flow Deformable Warping of Lung Atlas

Image registration is an important task for many medical
applications such as comparing/fusing images from different
modalities, tracking temporal changes in medical images col-
lected at different times. A registration scheme calculates a
transformation mapping from source image to target image by
matching corresponding pixels of images. Correspondences
can be calculated either for each pixel or only for salient loca-
tions such as edge points or corners. Images can be modeled
using local feature descriptors such as Scale Invariant Feature
Transform (SIFT) [43], or using a combination of gradient,
shape, and curvature descriptors, as in [44], [45]. In this work,
we use the SIFT descriptor which is among the best performing
local feature descriptors [46].

Nonrigid registration is a challenging problem as each pixel
has a greater degree of independent motion and global geo-
metric constraints cannot be enforced. Several nonrigid regis-
tration algorithms have been reported in the literature [47]-[56].
Some of them focused on registering different views of the same
scene in which a relatively simple transformation will be suffi-
cient for registration. In our case, in order to create a lung model,
we register chest X-rays from different patients. In other words,
the image pairs are similar, but have different objects. There-
fore, the registration process needs an elaborate transformation
mapping. Our work is focused on inter-patient similarity with
deformable warping for creating a patient specific lung shape
atlas. We found that the SIFT-flow algorithm [33], which is
designed to register images with different scene/object appear-
ances, worked well for this task.

The SIFT-flow algorithm models local gradient information
of the observed image using the Scale Invariant Feature Trans-
form (SIFT) [43]. The SIFT features of the X-rays are calcu-
lated as follows. First, the gradient orientations and magnitudes
are computed at each pixel. The gradients are weighted by a
Gaussian pyramid in a K x K region (e.g., ' = 16) in order
to increase the influence of the gradient in the center. Then, the
regions are subdivided into £ X k (e.g., & = 4) quadrants. In
each quadrant, a gradient orientation histogram is formed by
adding the gradient values to one of eight orientation histogram
bins. The concatenation of orientation histograms of the quad-
rants form the SIFT descriptor vector for the center pixel of the
K x K region. Once we have calculated the SIFT features for the
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Fig. 4. (a)—(b) Pair of X-ray images from the JSRT dataset [13]. The right one
(b) is the patient X-ray, and the left one (a) is the most similar X-ray to the
patient X-ray in the database. Colored markers indicate corresponding matches
based on SIFT-flow features for sample pixels. (c) Transformation mapping is
applied to all pixels by shifting them according to spatial distances between the
corresponding matches. (d) Warped mask.

image pair, the registration algorithm computes pixel-to-pixel
correspondences by matching the SIFT descriptors. The corre-
spondence matching is formulated using the following objective
function:

E(w) = Z min(|[S1(p) — S2(p + w(p))||. ¢)

peP

+> ([up)| + [v(@)])
+ Z min{|u(p) — u(q)|, d)

(p,a)EN
+ min(|v(p) — v{q)],d) (6)

where P is the set of pixels in the X-ray; N is the spa-
tial neighborhood set, 51 and Sy are the SIFT images in
which each pixel is represented by a SIFT descriptor vector;
w(p) = (u(p), v(p)) are the flow vectors at p; ¢ and d are the
truncated thresholds. The minimization algorithm calculates
the SIFT-flow w by minimizing the objective function. The
first term of the objective function forces the algorithm to
match pixels according to their SIFT descriptors, with warping
based on the registration flow vector w(p). The second term
constrains the flow vectors to be as small as possible. The third
term constrains the flow vectors of neighboring pixels to be
similar.

Fig. 4 illustrates the registration stage of the proposed system.
Fig. 4(b) is the patient X-ray. Fig. 4(a) is the most similar X-ray
to the patient X-ray in the database chosen according to the

shape similarity between the lungs. The SIFT-flow algorithm
calculates corresponding matches for each pixel of these X-ray
pair by solving the flow vectors w(p). Colored markers indicate
corresponding matches for a few pixel samples. We see that the
lung boundary in one X-ray image approximately matches the
lung boundary in the other X-ray. The spatial shifts between
corresponding matches define the transformation mapping for
pixels. The algorithm applies the transformation mapping by
simply shifting each pixel in the training mask according to
the calculated shift distance [Fig. 4(c)]. The registered mask is
shown in Fig. 4(d). The registration stage is repeated for each of
the top-n (e.g., n = 5) similar X-rays to the patient X-ray. The
lung model for the patient X-ray is built-up using the mean of
the top-ranked registered masks. The computed patient specific
lung model is a probabilistic shape prior in which each pixel
value is the probability of the pixel being part of the lung field.
Section III-B describes the incorporation of the lung atlas model
into the graph cuts segmentation framework.

The registration algorithm that we employed applies the
transformation mapping for each pixel independently. There-
fore, the registered masks forming the lung atlas model have
rough boundaries. We use cubic spline interpolation [57] to
obtain smoother boundaries of the lung masks. In order to
preserve the important regions of the lung boundary such as
costophrenic angle regions, instead of equal sampling, we
extract the critical points of the contour by using a curve
evolution technique [58]. In this technique, at each iteration,
an insignificant point which has the lowest relevance value is
eliminated from the lung boundary. The relevance value for a
point P with neighboring points P— and P+ is defined as

|0(-5’1,52) — 180”(51)[(&2)
I(s1) +1(s2)

K(Sl,SQ) = (7)

where s; denotes the line segment between P and P_, s5 de-
notes the line segment between P and Py, 6(s1, s2) is the outer
turn angle between s; and $2, {(s1) and [(s2) are the length
of $1 and s4, respectively. This measure aims to remove points
with short and straight neighboring line segments. The iteration
is terminated when the number of critical points reaches a pre-
specified value. In the experiments, we set the number of critical
points to 1/10 of the number of points on the nonsmoothed lung
boundary. Fig. 5 shows an example of the boundary smoothing
stage at different iterations.

Feature based registration algorithms are not accurate within
textureless regions of images due to a lack of features. In our
case, we are only interested in registering the lung regions
which contain enough texture for a reliable correspondence
calculation. There may be some exceptional cases, such as
dense breasts (in women’s X-rays) or fluid in the lung space
(in abnormal X-rays), which decrease the visibility of texture.
However, adjusting the contrast with a histogram equaliza-
tion algorithm in preprocessing stage helps to uncover some
texture information in these areas if the opacity is not severe.
Experimental results in Section IV-C validate the adequacy
of the nonrigid registration approach using SIFT-flow for
anatomically driven alignment of lung images.
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Fig. 5. (a) Red contour is the nonsmoothed boundary after the warping stage.
(b)—(d) Blue dots are the critical points at different iterations. The green curve
is the cubic spline interpolation of all critical points. The numbers of critical
points on each lung are 100, 60, and 30, respectively. At each iteration, a point
with the lowest relevance value is removed from the contour. Outer turn angles
close to 180° and short line segments have a low relevance value. Note that,
decreasing the number of critical points does not smooth the costophrenic angle

region because of the sharp angle.
[ ! . HD
(b)
Fig. 6. (a) Randomly selected chest X-ray image from the JSRT dataset.

(a)
(b) Patient-specific lung model after registration. Each pixel intensity in the
lung model image represents the probability of the pixel being part of the lung
region.

C. Anatomical Lung Atlas: An Example

In this section, we illustrate the image retrieval framework
followed by the nonrigid registration stage with an example.
Fig. 6(a) shows a random X-ray from the JSRT dataset, and the
corresponding estimated lung model is shown in Fig. 6(b). The
algorithm chooses the most similar X-rays by comparing in-
tensity projections of images. The top five most similar X-rays
to the patient X-ray are shown in Fig. 7(a). The SIFT-flow
algorithm computes correspondences between the patient and
the training X-rays. The spatial distances between the corre-
sponding matches are given by the transformation mapping
between the pixels. In order to show the visual success of
the registration stage, we warped the training images with the
calculated transformations. The resulting X-rays are shown
in Fig. 7(c). Note the similarity between the patient and the
warped X-rays. Our system computes the prior lung model
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Fig. 7. (a) Top five training images using the partial Radon transform and Bhat-
tacharyya shape similarity measure between the target patient CXR shown in
Fig. 6(a) and the (JSRT) database. (b) Training masks corresponding to the five
most similar X-rays. (c) Retrieved X-rays are warped using the calculated trans-
formation mappings. Note that this warping is actually not needed in the algo-
rithm, but is shown for illustrative purposes. (d) Training masks are warped to
the target patient CXR. The average of these warped masks, shown in Fig. 6(b),
forms the patient-specific lung model.

by applying the transformation mapping to the training masks
[Fig. 7(d)]. The average sum of the registered masks forms the
lung model for the patient X-ray. The calculated lung model is
shown in Fig. 6(b).

III. GRAPH CUTS BASED LUNG BOUNDARY SEGMENTATION

The system detects the lung boundary of X-ray images
using image properties and the lung model calculated in the
previous stage. We perform image segmentation using graph
cuts [34]-[36] and model the segmentation process with an
objective function. The max-flow min-cut algorithm [59] min-
imizes the objective function to find a global minimum which
corresponds to the foreground (fg) and the background (bg)
labeling of the pixels. This section provides the details of the
segmentation component of our system.

A. Graph Cuts: Terminology

The graph cuts algorithm models computer vision problems
using an undirected graph G = (V. E). The set of vertices V'
represents the pixel properties such as intensity; and the set of
edges I/ connects these vertices. The edge weights represent a
spatial proximity measure between the vertices. The graph has
two extra vertices (terminals) representing the fg and the bg la-
bels. There are two types of edges: 1) neighborhood edges de-
noted as {p, ¢} where p,q € V model the boundary proper-
ties of objects; and 2) edges between terminals and pixels de-
noted as {p, S} and {p, T'}, where S and T represent the fg and
the bg terminals. The graph structure is formulated in an ob-
jective function that consists of a data and a smoothness term.
The data term forces the algorithm to produce a solution that is
consistent with the data (e.g., image intensities). On the other
hand, the smoothness term encourages the algorithm to favor a
smooth solution (e.g., assigning similar labels to neighborhood
pixels). The edge weights between the terminals and the pixels
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are integrated into the data energy term; the neighborhood edges
are integrated into the smoothness energy term of the objective
function. To minimize the objective function, we compute the
min-cut which partitions the graph into two subgraphs such that
each pixel is connected to either the S or the 7" terminal, and
thus is either labeled as fg or bg.

B. Objective Function

The objective function is formulated based on the desired seg-
mentation criteria including: 1) the segmentation labels (fg/bg)
should be consistent with the image intensities of the lung; 2)
the neighborhood labels should be consistent with each other,
and 3) the resulting segmentation should fit the calculated shape
model. Let f = {f1,..., fp,--., fp} be a binary vector whose
components f;, correspond to fg/bg label assignments to pixels
p € P, where P is the set of pixels of the image. The algorithm
aims to find an optimal configuration of f according to the spec-
ified constraints. Based on the segmentation criteria, we define
the objective function in terms of boundary, region, and shape
model properties of the pixels as follows:

E(f) = Eq(f) + wE(f) + asEn(f) (®

where IY4, E,, and E,, represent the data, smoothness and lung
model terms of the objective function. The scalar weights o,
aea, ag are empirically determined; we use oy = a3 and a rela-
tively low weight («2) on the smoothness constraint in order to
preserve features such as the sharp costophrenic angles. In order
to confine the segmentation labels to be close to the image in-
tensities, we formulate the edge weights between the terminals
and the pixels as follows:

Ea(f) =) (Bipsy + Bipry) ©)
pel’

Egp sy = I — I7|/Inax (10)

E{PaT} = |IP - IS‘/IIIIE:LX (11)

where I, denotes the intensity of pixel p, Is and Iz are the
virtual intensities of object and background terminals, and 1,
is the maximum intensity value of the observed image. We
model the terminal intensities using our training masks. F,, s}
and 'y, 7} measure how well the assigned labels fit the image
intensities.

We assign a high weight to neighborhood pixels that have
similar intensities to ensure that nearby pixels have similar la-
bels. The boundary penalties between pixel p and ¢ are formu-
lated as follows:

Ey(f) = Z E{p,q}éfpifa

p.g€N(p)

= Y exp(—(L, — I))b, 41,

p.qE€N(p)

(12)

where p is the current pixel, and ¢ € N(p) are its neighbors,
and

1, if fo # £,

Ofpitfe = {0 if f, = f,. 13)

The exponential term is inversely proportional to edge strength.
Flat regions in the image have high values to prevent cuts that
break up such smooth regions. Whereas along edges the smooth-
ness term has low values and cuts can separate the edge set into
separate regions.

We incorporated the patient specific lung atlas model into the
graph edge weights between the terminal nodes and pixel nodes
p. As explained in Section II-B, the lung model is calculated by
registering the top n most similar X-rays to the patient X-ray. It
is formed as a 2-D array that has same size as the observed image
and contains the probabilities of the pixels being part of the lung
field. The lung model energy is incorporated as weights associ-
ated with the source (fg) and terminal (bg) nodes as follows:

En(f) = Z Pr, + Z(l — Pry)

peS peT

(14)

where Pr, indicates the probability of pixel p being part of the
lung model.

After formulating the objective function, the next step is
to compute the global minimum (min-cut) corresponding to
the optimal labeling configuration satisfying the formulated
constraints. We use a fast implementation of min-cut/max-flow
[59]. The global minimum separates the graph into two sub-
graphs in which some pixels are connected to the fg terminal
and the other pixels are connected to the bg terminal.

IV. EXPERIMENTAL RESULTS

A. Digital Chest X-Ray Datasets

In this work, we evaluated the proposed lung segmentation
algorithm using three different CXR datasets. To the best of our
knowledge, the only publicly available database for evaluating
lung segmentation in chest X-ray imagery is the JSRT dataset
which became available more than a decade ago in 2000 [13].
Most authors evaluate their lung segmentation methods on the
publicly available JSRT set. However, we think that evaluations
based on this dataset are flawed. While segmentations of healthy
lungs can be properly evaluated on the JSRT set, evaluating the
segmentations of abnormal lungs is a problem. The reason for
this lies in the limited number of abnormalities contained in the
JSRT set. The only abnormality covered by the set are nodules,
which in most cases do not affect the shape of the lung, espe-
cially when they are small or are not located in the peripheral
lung region. Most of the lung shapes in the JSRT set can there-
fore be considered normal. Other lung diseases such as tuber-
culosis and pneumonia, on the other hand, can severely affect
the lung shape. In the extreme case of a collapsed lung, or an
effusion, the lung shape will differ dramatically from the lung
shape of a healthy lung. These abnormal lung shapes can cause
problems for segmentation methods using lung models that have
been computed on healthy lungs only. It is therefore essential to
include abnormal lung shapes in the evaluation set of any auto-
matic lung segmentation algorithm.

At NLM, we used two additional chest X-ray datasets from
Montgomery County, Maryland, and India. The datasets were
de-identified by the data providers and were exempted from IRB
review at their institutions. The datasets were exempted from
IRB review (No. 5357) by the NIH Office of Human Research
Protections Programs. The new datasets are more challenging
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than the JSRT dataset. For example, the JSRT dataset contains
X-rays captured using an analog imaging system by exposing
film then later scanned into digital format [15]. These film-based
images have a homogeneous intensity appearance. On the other
hand, the chest X-rays in the India and Montgomery datasets
were acquired using digital scanners. The images have much
higher contrast in which rib cage edges are stronger and in-
tensity variations are more heterogeneous compared to JSRT.
These sets allow more realistic evaluations of our segmentation
method because they contain both normal and abnormal lung
shapes.

1) JSRT Set: Set compiled by the Japanese Society of Ra-
diological Technology (JSRT) [13]. The set contains 247 chest
X-rays, among which 154 have lung nodules (100 malignant
cases, 54 benign cases), and 93 have no nodules. All X-ray im-
ages have a size of 2048 x 2048 pixels and a gray-scale color
depth of 12 bit. The pixel spacing in vertical and horizontal di-
rections is 0.175 mm. The JSRT set is publicly available and has
gold standard masks [15] for performance evaluation. In our ex-
periments, we use JSRT masks as training masks for the regis-
tration stage.

2) Montgomery Set: Set from the Department of Health
and Human Services, Montgomery County, Maryland. The set
contains X-rays collected over many years under Montgomery
County’s Tuberculosis Control program. The dataset consists of
138 X-rays, 80 of them are normal and 58 X-rays are abnormal
with manifestations of tuberculosis. The X-ray images are in
12-bit gray-scale and their dimensions are either 4020 x 4892
or 4892 x 4020. The pixel spacing in vertical and horizontal
directions is 0.0875 mm.

3) India Set: Contains 397 chest X-rays from a private
clinic in India with resolutions of 2446 x 2010, 1772 x 1430,
or 2010 x 1572. The gray-scale color depth is 12 bit. The
pixel spacing in vertical and horizontal directions is 0.175
mm. It contains more challenging X-ray images due to rotated
torsi scans, stronger edges within the rib cage, denser shade
effects at apices, wide variations of lung sizes and large lung
deformations. In the experiments, we used a subset of the India
set, which contains arbitrarily selected 100 normal and 100
abnormal chest X-rays with gold standard masks.

We manually generated gold standard segmentations for the
chest X-ray sets under the supervision of a radiologist (JPM).
The gold standard lung boundary segmentations for the JSRT
dataset are from [15], and we used similar conventions in out-
lining the boundary and determining what parts of the CXR
image to include as part of the lung organ and what regions
to exclude. Both posterior and anterior ribs are readily visible
in the CXRs, the part of the lung behind the heart is difficult
to see and is excluded. We follow anatomical landmarks such
as the boundary of the heart, aortic arch/line, pericardium line,
or hilar and draw an inferred boundary when the pathology is
severe, including pleural effusion, pneumothorax, pneumonia,
or dense hilar affecting the morphological appearance of the
lungs, and sharp costophrenic angle that follow the diaphragm
boundary. We first used an interactive segmentation tool [60] for
a quick first segmentation pass through the dataset. The tool de-
tects edges automatically, allowing us to obtain a rough outline
of the lung boundaries with just a few mouse clicks. However,
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these contours are not accurate and jagged, so in a second pass,
under the supervision of a radiologist, we corrected any devi-
ations from the proper anatomic lung boundary in these rough
outlines. For the second pass, we used the web-based labeling
tool FireFly [61], [62], which offers more precise drawing and
editing functionality, powerful data management and online la-
beling capabilities. The net improvement in the foreground lung
mask between the two passes, using (1 — {2) measure [see (15)],
was around 5.8% and 4.0% for Montgomery and India datasets
respectively.

Benchmarking was done at a reduced image resolution of
256 x 256 to be compatible with published results. The lower
resolution provides automatic boundary smoothing, slightly
better segmentation results due to improved signal-to-noise
ratio with better suppression of distracting features from the rib
cage and clavicle bones, and yields faster performance.

B. Evaluation Metrics

Literature proposed several algorithms with different evalua-
tion metrics. In order to compare our segmentation quality with
the segmentation performances in the literature, we used three
commonly used metrics.

1) The Jaccard Similarity Coefficient (overlap measure): is
the agreement between the ground truth (GT) and the estimated
segmentation mask (S) over all pixels in the image. We formu-
late it as follows:

_[SNGT| |TP|
~ |SUGT| |FP|+|TP|+ |FN]|

(15)

where TP (true positives) represents correctly classified pixels,
FP (false positives) represents pixels that are classified as object
but that are in fact background, and FN (false negatives) repre-
sents pixels that are classified as background but that are in fact
part of the object.

2) Dice'’s Coefficient [63]: is the overlap between the ground
truth GT and the calculated segmentation mask S

SNGT| 2/TP|
|S| + |GT|  2|/TP| + |FN| + |FP|

DSC = (16)

3) Average Contour Distance (ACD): is the average dis-
tance between the segmentation boundary S and the ground
truth boundary GT. Let a; and b; be the points on the boundary
S and GT, respectively. The minimum distance of point ¢; on S
to the GT boundary is defined as follows:

d{a;, GT) = ming||b; — a,|. (17)
For ACD computation, the minimum distance for each point
on the boundary S to the contour GT is computed. Then, the
distances are averaged over all points of boundary S. In order
to make the similarity measure symmetric, the computation is
repeated from contour GT to contour S

Zi d(uiv GT)
{ai}|

ACD(S,GT) = = <

N > d(b;/»S)>
2

{6}
(18)

where | - | is the cardinality of the set.
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TABLE I
PARAMETER VALUES USED IN DIFFERENT MODULES OF THE
LUNG BOUNDARY SEGMENTATION PIPELINE

Description Value
Shape Model Parameters:

# of training masks 5
SIFT Feature Parameters:

window around the keypoint (pixel) 4 x 4 array
# of orientation quantization bins 8-bins
Non-rigid Registration Parameters:

«, the weight of the truncated L1-norm regularization 2
v, the weight of the magnitude of the flow 0.005
t,d truncation thresholds 40
# of iterations 30
Graph Cuts Parameters:

a1, data term weight 1
s, smoothness term weight 0.05
ag, lung model term weight 1

TABLE 11
OVERLAP, DICE, AND AVERAGE CONTOUR DISTANCE SCORES BETWEEN
THE GOLD STANDARD AND THE CALCULATED SEGMENTATIONS FOR
EACH X-RAY DATASET

Q DSC ACD
JSRT (all) 0.954 £ 0.015 | 0.967 &£ 0.008 | 1.321 £ 0.316
JSRT right 0.951 £ 0.020 | 0.967 £ 0.010 | 1.216 £ 0.388
JSRT left 0.957 £ 0.017 | 0.967 £ 0.011 | 1.426 4 0.453
Montgomery (all) | 0.941 £ 0.034 | 0.960 &+ 0.018 | 1.599 + 0.742
Montgomery right | 0.935 4 0.042 | 0.959 £ 0.025 | 1.453 £ 0.875
Montgomery left | 0.948 + 0.041 | 0.961 £ 0.023 | 1.744 £+ 1.024
India (all) 0917 £ 0.048 | 0.947 £ 0.028 | 2.567 + 1.454
India right 0913 £ 0.054 | 0.948 4+ 0.031 | 1.760 £ 1.193
India left 0.922 + 0.055 | 0.946 £ 0.034 | 1.887 + 1.144

C. Segmentation Performance of the System

We measure the segmentation performance of the system on
the aforementioned datasets. Table I summarizes the main pa-
rameter values used in different modules of the lung segmenta-
tion pipeline.

Table II lists the average Jaccard, Dice score, and contour
distances of segmentation performances of three datasets, in-
cluding left and right lung segmentation performances. Due to
homogenous intensity appearance of JSRT set, the segmenta-
tion performance is higher compared to the segmentation per-
formance on Montgomery and India sets. The quantitative re-
sults of all segmentations are shown in Fig. 8. We see that the
overlap scores of almost all segmentations (93.5% of all cases)
are higher than 0.90. Most scores are around the typical human
observer score (2 = 0.94). We get a few cases around §) =
0.80. Fig. 9 shows the visual quality of computed lung bound-
aries for the three datasets. The green and red contours repre-
sent the gold standard and the calculated segmentations, respec-
tively. Fig. 10 shows some example results where the method
failed due to abnormalities in the lung region.

D. Computational Speed of the Lung Segmentation Algorithm

The lung segmentation algorithm is only one component of
a full CAD pipeline for tuberculosis screening using CXRs. A
fielded system working in rugged conditions with minimal ac-
cess to technical and healthcare experts needs to be robust in
terms of accuracy and near realtime in terms of performance.
Image subsampling to a lower resolution prior to segmentation
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Fig. 8. Overlap score of each image in the JSRT, Montgomery, and India sets.
Each marker in the graph represents an X-ray image in the datasets. JSRT set
contains 247, Montgomery set contains 138, and India set contains 200 chest
X-rays.

speeds up runtime significantly while having a negligible im-
pact on accuracy. The computationally expensive numerical al-
gorithms for energy optimization are implemented in C++ and
other parts in Matlab. We report the execution times of our lung
segmentation algorithm on a desktop personal computer with a
2.53-GHz Intel Xeon CPU and 4 GB of memory in Table III.

E. Comparison With Existing Algorithms in the Literature

Many papers have reported good segmentation results on
chest X-ray images. Ginneken et al. [32] reported several pixel
classifier algorithm scores to compare their rule-based scheme.
In their subsequent work [14], quantitative results of some early
segmentation algorithms are listed. However, these algorithms
are conducted on nonpublic datasets. Therefore, comparison of
our segmentation results with the segmentation results of these
algorithms is not possible. In 2006, the same research group
[15] delineated lung, heart, and clavicle boundaries of the JSRT
set [13] under the supervision of a radiologist. Lung boundary
contours were drawn by two observers independently, with
one segmentation set done by a medical student trained by a
radiologist being utilized as the gold standard for evaluation.
The second observer’s segmentations (a nonmedical student
also trained by a radiologist) are used to measure inter-ob-
server accuracy in order to compare the algorithm results
with human performance. Tables IV and V list the results
of our system on the JSRT dataset together with the results
reported in the literature. The accuracy of our proposed system
is @ = 0.954 £ 0.015. (It is even higher at 0.961 £+ 0.020
without the smoothing stage of the registered lung model). The
improved pixel classification, hybrid voting algorithms, and our
system achieve a human observer performance level, which in-
dicates the success of the computerized methods. Two different
observer accuracies are reported in the literature. In [32], 98.4%
accuracy is calculated on an internal set; and in [15], 94.6%
accuracy is calculated on the JSRT set. Every system that has
an accuracy between these two observer performances can be
regarded as accurate and robust for lung boundary detection on
chest X-rays. According to the table, hybrid methods produce
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Fig. 9. Segmentation results on (a) JSRT, (b) Montgomery, and (c) India sets. Green and red contours indicate the gold standard and automatic segmentation

results, respectively.

better results than other methods. MISCP [31], ASM-SIFT
[25], and ShRAC [29] are the modified versions of ASM [21],
and produce better results than traditional ASM [25], [15]. In
Table IV, we report three different ASM results. Because of the
internal parameters of the ASM method, researchers obtained
different segmentation results in [25] and in [15]. In [15], the
best parameter set is tuned for this method (ASM-tuned in
Table IV), resulting in better results than the ones achieved by
other implementations.

F. Segmentation Performance of Lung Model

In atlas-based segmentation, the registered atlas (or combina-
tion of registered atlases) can be treated as a final segmentation

as in [64], [65]. Therefore, we also measure the segmentation
accuracy of the lung model. In the proposed system, the lung
model for each patient is formed by following these two steps:
1) selecting the most similar X-rays in the training database, and
2) warping the selected X-rays with a nonrigid registration al-
gorithm. The average sum of the warped masks is used as lung
model which is a probability image in which each intensity (be-
tween 0—1) indicates the probability of being part of the lung re-
gion (see Fig. 6). In our experiment, we first converted the prob-
ability image (lung model) to a binary image by thresholding the
probabilities with 0.5. Then, we calculated the segmentation ac-
curacy of the binary image. We measured 0.946+0.016 average
overlap score () for the JSRT dataset which is comparable with
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Fig. 10. Particularly difficult lung segmentation cases. (a) The left diaphragm is elevated and there is a large air-distended colon loop below the lung boundary
which is incorrectly combined with the lobe into a single region by the automatic algorithm. (b) Detected lung boundary includes the air cavity below left lung.
(c)—(e) The algorithm could not detect the lung boundary correctly due to opacity caused by fluid in the lung space. The radiologist “estimated” the ground truth

lung boundary (green contour).

TABLE III
EXECUTION TIME AND SEGMENTATION PERFORMANCE OF LUNG
SEGMENTATION ALGORITHM ON JSRT SET AT DIFFERENT RESOLUTIONS

Resolution [ Execution Time [ € of JSRT dataset

256 x 256 20-25s 0.954 + 0.015

512 x 512 85-90s 0.953 £ 0.016

1024 x 1024 355-360s 0.937 £+ 0.026
TABLE IV

OVERLAP (£2) SCORES OF ALGORITHMS REPORTED IN THE LITERATURE

Q
Proposed System 0.954 £ 0.015
Hybrid Voting [15] 0.949 + 0.020
PC postprocessed [15] 0.945 4+ 0.022
Human Observer [15] 0.946 £+ 0.018
Fusing-Intensity&ShapePriors [28] | 0.940 &£ 0.053
Hybrid ASM-PC [15] 0.934 + 0.037
Hybrid AAM-PC [15] 0.933 + 0.026
MISCP [31] 0.930 £ 0.045
ASMOF [23] 0.927 + 0.032
Fuzzy-Curve [7] 0.927 £ 0.033
ASM-SIFT [25] 0.920 + 0.031
ShRAC [29] 0.907 + 0.033
ASM-tuned [15] 0.903 + 0.057
ASM [25] 0.870 + 0.074
AAM [15] 0.847 £ 0.095
Mean shape [15] 0.713 & 0.075

TABLE V
AVERAGE CONTOUR DISTANCES OF THE ALGORITHMS IN THE LITERATURE

ACD
Proposed System 1.321 £ 0.316
Fuzzy-Curve [7] 1.730 £+ 0.870
Fusing-Intensty&ShapePriors [28] | 2.460 £ 2.060

the literature (see Table V). The selection stage of the X-rays
most similar to the patient X-ray, the performance of the regis-
tration algorithm and the combination of registered atlases in-
crease the lung model accuracy. However, there is a possibility
that the training atlas set could be anatomically unrepresenta-
tive of the patient X-ray and could produce a poor lung model.
Therefore, we prefer to use the lung model as another term in
the objective function of the graph cuts algorithm. The graph
cuts refinement step increased the segmentation performance to
0.954 £ 0.015 as we listed in Table II.

We measure the segmentation performance of the system with
respect to the number of training masks. Fig. 11(a) shows the
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Fig. 11. (a) Segmentation performance and (b) execution time (in second) of
the system with respect to the number of training masks. (Execution time is
measured at resolution of 256 x 256.)

average {2 overlap score in the JSRT dataset, with the number of
masks varying from one to ten. Using a small subset of images
is sufficient (at least three) to build an accurate lung model atlas
while significantly speeding up the step of nonrigid registration
between the training and patient query images [Fig. 11(b)].

G. Costophrenic Angle and Apical Region of Lung

Robust segmentation of costophrenic angles (CP) and apices
are important for the subsequent processes, especially for tu-
berculosis which often begins at the apices. Costophrenic angle
blunting may indicate the presence of pleural effusion [66],
[67]. However, segmenting these regions is more challenging
compared to the other parts of the lung. The clavicle bone
causes intensive intensity variation at the apex, which can mis-
lead the algorithm to label the pixels at this region incorrectly.
Energy minimization algorithms generally have problems in
segmenting lung and thin regions, because of the smoothness
constraint in the objective function [68]-[70]. Therefore, seg-
menting the lower lobes of the lung is more challenging due
to the small CP-angle. In order to observe the performance
of the system for these regions, we evaluate the segmentation
algorithm at the top 20% and bottom 20% of the lung, as shown
in Fig. 12. Figs. 13 and 14 show visual segmentation results
at the clavicle and costophrenic angle regions. Green and red
contours represent the gold standard and automatic segmenta-
tion, respectively. Table VI summarizes the overlap score in
these regions. According to the overlap scores, our algorithm
robustly segments the clavicle region even in the India dataset
which has strong intensity inhomogeneities at the apex due to
the presence of the clavicle bone. The algorithm performance
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decreases in the costophrenic angle region compared to all
other regions (Table VI).

V. CONCLUSION

We have presented a robust lung boundary detection method
that is based on a patient-specific lung atlas using fast partial
Radon profile similarity selection and SIFT-flow nonrigid
registration with refinement using a graph cuts segmentation
algorithm. We evaluated the algorithm using three different
datasets containing 585 chest radiographs from patients with
normal lungs and various pulmonary diseases. On the publicly
available JSRT dataset, experimental results showed an accu-
racy of 95.4% () overlap measure), compared to the expert
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TABLE VI
SEGMENTATION PERFORMANCE AT APICAL AND COSTOPHRENIC
ANGLE REGIONS

Overlap Scores at Apex

Dataset Avg =+ std Min | Median | Max
JSRT 0.966 + 0.018 | 0.891 0.968 0.999
Montgomery | 0.890 £ 0.040 | 0.749 0.906 0.971
India 0.905 + 0.046 | 0.718 0.910 0.999
Overlap Scores at Costophrenic Angle

Dataset Avg + std Min Median | Max
JSRT 0.874 £ 0.109 | 0.295 0.905 0.994
Montgomery | 0.834 £ 0.134 | 0.054 0.877 0.969
India 0.843 £ 0.113 | 0.390 0.876 0.972

segmentation gold standard, which is the highest machine per-
formance reported in the literature. On the other CXR datasets
from Montgomery County and India, with more challenging
pathologies including abnormal lung boundaries, the same al-
gorithm shows consistently high detection accuracies of 94.1%
and 91.7%, respectively. These are the first results reported for
automatic lung boundary segmentation that include abnormal
lung shapes. The results indicate the robustness and effective-
ness of the proposed approach when applied to CXRs collected
in different geographical regions. A point to note here is that
fluid-filled lungs are radio-opaque, and any radiologist-marked
“ground-truth” lung boundary is only an estimate. Therefore,
one can assert that the algorithm is being criticized too severely
in such cases.

We are making our CXR datasets from Montgomery County,
MD, USA and India publicly available to the research com-
munity. This includes the X-ray images as well as associated
metadata and ground-truth lung segmentations. These two new
CXR sets provide for the first time a publicly available research
collection of CXRs with manifestations of tuberculosis. The
X-rays cover different regions of the world, including high in-
cidence regions. The ground-truth segmentations are provided
by a board certified radiologist, and represents the first publicly
available collection to include abnormal Iung shapes. These sets
will enable new research opportunities, and they will improve
the existing benchmark evaluations.

APPENDIX

The X-ray sets as well as their corresponding lung boundaries
are publicly available for research purposes upon review of re-
quest for data. To submit the request, please visit the following
webpage: http://archive.nlm.nih.gov/. Under the “Repositories”
tab, a link points to a page with more information on our chest
images, including contact information.
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