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ABSTRACT

One of the first steps of computer-aided systems is robustly
detect the anatomical boundaries. Literature has several suc-
cessful energy minimization based algorithms which are ap-
plied to medical images. However, these algorithms depend
on parameters which need to be tuned for a meaningful so-
lution. One of the important parameters is the regulariza-
tion parameter (\) which is generally estimated in an ad-hoc
manner and is used for the whole data set. In this paper we
claim that A\ can be learned by local features which hold the
regional characteristics of the image. We propose a \ estima-
tion system which is modeled as a multi-class classification
scheme. We demonstrate the performance of the approach
within graph cut segmentation framework via qualitative re-
sults on chest x-rays. Experimental results indicate that pre-
dicted parameters produce better segmentation results.

1. INTRODUCTION

The chest films contain important information about the con-
dition of the patients. However, their interpretation is not triv-
ial which encourage the researchers to develop computer al-
gorithms to assist the radiologist in diagnosis process. Au-
tomatic segmentation of anatomical fields is one of the first
steps of such computer-aided systems. Some of the abnor-
malities and diagnostic information can be directly extracted
from the anatomical boundaries such as Total Lung Capacity
which aids in detection of pneumonia, pulmonary atelectasis
or obstructive airways diseases [1]. Some algorithms need
anatomical boundaries for the further stages such as tuber-
culosis classification [2]. Robust segmentation of anatomical
shapes is needed in order to extract the diagnostic information
accurately.

Literature have several energy minimization based ap-
proaches [3, 4] which are used to extract the anatomical
boundaries. A common energy function for the segmentation
task is,

E(f) = Ea(f) + AEs(f) (1)
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where f is the segmentation labels; E4(f) is the data term and
E,(f) is the smoothness term. The data term confines the
segmentation labels to be close to the observed image. The
smoothness term forces the algorithm to assign similar labels
to the neighborhood pixels. The smoothness term is included
into the energy formulation with parameter A which regular-
izes the smoothness degree of solution. Choosing a suitable A
is important to obtain a satisfactory segmentation [5]. If A is
small, the segmentation will be noisy. On the other hand, if A
is large, the segmentation will not fit the observed data.

Generally, ) is estimated in an ad-hoc manner and is used
for the whole dataset. There are several regularization param-
eter estimation approaches, but are outside the scope of this
paper because no image processing is involved. The regular-
ization parameter depends on image statistics such as image
noise and variation of scene structures [6, 7, 8]. Since images
have different statistics, A has to be estimated for each image
separately for a better performance. This idea is illustrated
on synthetic images in Figure 1. We minimize Eq 1 and plot
the percentage error rate of segmentation versus regulariza-
tion parameter A. The minimum point of error-\ curves (red
point) is the optimal A\ of each image. The graphs indicate
that the optimal A varies across different images for the same
algorithm.
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Fig. 1. The dependence of the energy functional (Eq 1) on pa-
rameter A is shown for synthetic images which are corrupted
by Gaussian white noise with standard deviation of 0.17. The
error is the percentage of non-overlapping pixels between the
segmentation and the ground truth.
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Recently, it is accepted that a single X is not optimal for
all regions of the image especially on regions which have
different image statistics. Therefore, spatially adaptive reg-
ularization has been acknowledged which modulate the effect
of regularization in a heuristic manner using regional image
cues. The proposed cues so far are image noise [9], gradi-
ent [10, 11], and curvature [12].

This paper proposes that regularization parameter of lo-
cal regions can be learned using a classification algorithm by
training with local feature vectors. We modeled the parame-
ter estimation as a supervised classification scheme such that
each region is assigned a regularization label according to the
local statistics. The main contributions of the paper are (i)
modeling the regularization parameter estimation as a multi-
class classification scheme, and (ii) solving the regularization
parameter estimation through a simple learning algorithm. To
the best of our knowledge, the regularization parameter esti-
mation through a classification framework was not attempted
in the literature before.

We used multi-class boosting algorithm [13] for the clas-
sification scheme. We demonstrate the performance of our
approach within graph cut segmentation [3, 4] due to its de-
pendence on parameter \. We show the qualitative results
on a public lung database [14]. We describe the proposed
system in Section 2 and give the experimental results in Sec-
tion 3. The last section concludes the paper and discusses
future work.

2. MULTI-CLASS REGULARIZATION LABELING

The multi-class regularization labeling system consist of three
main stages: (i) The system first learns A labels by training a
boosting algorithm with local feature vectors of the training
images. (ii) The trained system predicts a A-map for the test
image. (iii) An energy-based segmentation algorithm uses the
predicted A-map to segment the test image. Figure 3 illus-
trates the steps of the proposed system.

2.1. Learning and Estimating A\ Labels

System models the regional characteristics of x-rays using a
set of shape and texture features. We used Haar based [15, 16]
features to model edge and curvature information, local bi-
nary pattern [17] for texture information, and Hessian [18]
for shape information. We then use the features to train the
classifier. Let fF denotes the k" feature of i pixel of image
1. The feature vector of pixel ¢ is obtained by concatenating
all features as f; = [f}, f2, ..., fX]7. Using the feature vec-
tors f;, we train a boosting algorithm and classify the feature
vectors of a given image into one of the A classes.

For the training stage, we define the corresponding \; la-
bel of feature vector f; automatically with the help of the
ground truth segmentation. The system assigns an arbitrary \;
label for each pixel among the 10 class labels initially. Then,
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it measures the segmentation error by assigning other labels
in the set. The A\ map with local minimum error is used as the
ground truth label map for the training image. Experimental
results in Section 3 validate the adequacy of the ground truth
labels.
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Fig. 2. The Framework of Multi-Class Regularization Label-
ing

Fig. 3. The A-map is shown in color map. Blue pixels indicate
smaller A labels, and data term will be more effective at these
regions. Red pixels indicate larger A labels, so smoothness
term will be more effective at these regions.

We train the system using a multi-class boosting [13] al-
gorithm with the feature set {f;,v;}2¥., where f; is the fea-
ture vector, y; € A is the regularization label of pixel ¢, and
N is the number of pixels on the image. The learning algo-
rithm starts with weak hypotheses and produces a more accu-
rate classifier by iteratively refining and combining the weak
learners. The trained system estimates A labels of a test image
per pixel base.

2.2. Segmentation with Predicted A Map

Predicted A labels are used in graph-cut image segmentation
framework. We formulate the objective function in Eq 1 as
follows:

E(f) =Y (L —Is|l+ o)+ Y Apeap(—(I = 1,)%), )
peEP P,q€EN

where I, is the intensity at pixel p, g is the object or back-
ground label intensity, N is the neighborhood pixels ¢ around
pixel p. Object and background label intensities are deter-
mined with random seeds (0.5% of image pixels for each la-
bel) using ground truth mask. A\-map is incorporated into the
objective function in second term (smoothness term) with A,
which represents the predicted \ for pixel p.



There are two points that distinguish our work from the
literature. (i) Feature vectors model the image region charac-
teristics better than a single local image cue. Thus, proposed
algorithm estimates more reliable regularization parameters
for the image. (ii) The supervised learning based structure of
the approach makes it possible to incorporate additional fea-
tures into the algorithm.

3. EXPERIMENTS

We evaluate the proposed system on a publicly available chest
x-ray data set which is compiled by the Japanese Society of
Radiological Technology (JSRT) [14]. The JSRT data set con-
tains 247 chest x-rays, among which 154 x-rays have tuber-
culosis nodules and 93 x-rays are normal. The data set has
ground truth segmentation masks [19]. We have chosen 5 ran-
dom images from the data set for training. The remainder of
the set is used for testing.

As quantitative measure, we use the overlap percentage of
segmentation and ground truth boundaries as follows:

Q-__m
TP+ FP+FN
where TP is true positive (area correctly classified as object),
FP is false positive (area incorrectly classified as object),
and FN is false negative (area incorrectly classified as back-
ground). We compare the predicted regularization labels
against i) single-global A for data set, ii) gradient-based spa-
tially adaptive method [11], and iii) curvature-based spatially
adaptive method [12]. Graph cut algorithm segments x-rays
with calculated A parameter. For fair comparison, we keep all
other graph cut parameters equal for compared methods.

Computational time for feature extraction takes 64s, train-
ing takes 110s, estimating A labels takes 22s, and graph cut
segmentation takes 8s for a 1024x1024 x-ray on a computer
with 2.27GHz Intel Core 2 Duo CPU and 3GB memory.
Training stage is executed only one time. Boosting and graph
cut optimization tasks are carried out in C++, and visualiza-
tion part is implemented in Matlab.

Single-Global Lambda for Data set: Generally A is esti-
mated in an ad-hoc manner and is used for the whole data set.
We calculated a global A (Ag) for 15 test images from data set
by trial and error approach. The A which produces minimum
segmentation error (1-€2) for the subset is defined as global A.

Spatially Adaptive Methods: We compared the pro-
posed method with spatially adaptive methods which uses
gradient [11] and curvature [12] cues of image regions. In the
experiments, we first calculate these features. Then, we adap-
tively change the A\ according to the local cue information.

Ground Truth A\ Map: The segmentation performance
of the proposed method depends on two modules of the sys-
tem: (i) feature extraction, and (ii) region classification for
A labeling. If feature extraction and classification are done
successfully, the system estimates better A for regions. In or-
der to show that better predicted A map produces better seg-

(3)
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mentation, we segment the images with ground truth A maps.
Segmentation with ground truth A-maps also validate the ad-
equacy of ground truth labels.

In the experiments, single-global A, adaptive A with cur-
vature cue, adaptive A with edge cue, ground truth A-map and
predicted A-map are labeled as A\g, Ao, Ag, Agr and Ap, re-
spectively. Figure 4 shows the graph cut segmentation with
A-maps on chest x-rays. The overlap scores of all segmen-
tations are reported in Table 1. Edge and curvature cues are
only rely on lung boundary, therefore strong rib cage edges
mislead the feature extraction algorithm. Curvature cue is
mostly good at segmenting the bottom part of the lung be-
cause of the costophrenic angle curvature. However, it some-
times fails to segment the outer boundary of lung especially
if the lung shape is not curved enough. On the other hand,
the proposed approach combines edge, texture and curvature
information in learning framework. Therefore, the segmen-
tation with predicted A-map produced better results than the
single best A and adaptive A with other cues. Table 2 com-
pares the segmentation results with predicted A-map with the
literature work.

Overlap Scores of Segmentation Masks

A-map Avg =+ std Min | Median | Max
g [20]7 | 0.857 £0.057 | 0.503 0.869 | 0.956
Ag [11] 0.831£0.051 | 0.516 | 0.843 0.916
Ac [12] | 0.831 £0.051 | 0.514 | 0.842 | 0.920
Ap 0.901 £+ 0.054 | 0.541 0911 0.969
AT 0.976 £ 0.024 | 0.732 | 0.938 0.994

Table 1. The overlap percentages between the ground truth
segmentation and automated segmentation of all 247 images
in lung database.

Method Avg + std Min Median | Max

GC with Agr 0.976 + 0.024 | 0.732 0.938 0.994
Hybrid Voting [19] 0.949 +0.020 | 0.818 0.953 0.978
PC postprocessed [19] | 0.945 £0.022 | 0.823 0.951 0.972
Hybrid ASM-PC [19] | 0.934 +0.037 | 0.706 0.945 0.968
Hybrid AAM-PC [19] | 0.933 £0.026 | 0.762 0.939 0.966
ASM-SIFT [21] 0.920 + 0.031 | 0.783 0.928 0.961
ASM [19] 0.903 + 0.057 | 0.601 0.924 0.960

GC with Ap 0.901 + 0.054 | 0.541 0.911 0.969
ASM [21] 0.870 = 0.074 | 0.608 0.892 0.954
AAM [19] 0.847 £ 0.095 | 0.017 0.874 0.956
Mean shape [19] 0.713 £ 0.075 | 0.460 0.713 0.891

Table 2. Overlap scores on JSRT dataset compared to gold
standard segmentation. GC: Graph Cut, PC: Pixel Classifica-
tion, ASM: Active Shape Model, AAM: Active Appearance
Model.

4. CONCLUSIONS AND FUTURE WORK

In this paper, we describe a methodology for adaptive param-
eter learning to improve the segmentation performance using

!'Same scores as in [20] but calculated using overlap instead of Dice score.
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Fig. 4. Segmentations and their overlap scores

a multi-class classifier approach. We demonstrated the per-
formance of the system within graph cut segmentation frame-
work. The approaches in literature modulate the regulariza-
tion parameter using a single feature or a heuristic combina-
tion of a few features. We model the characteristics of the im-
age regions with feature vectors which includes haar feature
for edge, local binary patter for texture and hessian for shape
information of local regions. Therefore our approach charac-
terizes the image regions better than using single feature. The
simple structure of the system allows to incorporate alterna-
tive features such as Scale Invariant Feature Transform which
is one of the best performing feature descriptors among local
descriptors [22]. In the experiments, we tested the proposed
system on lung boundaries. JSRT set also contains clavicle
and heart masks which are suitable to validate the system per-
formance on other type of anatomical shapes. Future work
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aims to segment other 2D and 3D anatomical shapes using
stronger features and classifiers.
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