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a b s t r a c t 

Initiation, progression, and therapeutic response in cancer are largely influenced by tumor microenviron- 

ment. Segmentation of tumor into epithelial vs. stromal regions constitutes the first step for the study of 

tumor microenvironment and its effects on disease progression. This paper proposes a new method for 

stromal vs. epithelial tissue identification from images of H&E stained specimens. The proposed method 

integrates convolutional neural networks (CNN) based supervised classification with unsupervised im- 

age segmentation. The scheme combines the strengths of deep learning (feature learning and classifi- 

cation) with the boundary localization accuracy of image segmentation for enhanced performance. Our 

experimental results on Stanford Tissue Microarray Database show that integration of CNN classification 

with explicit image segmentation leads to better adherence of identified class boundaries to actual tissue 

boundaries and improves the classification accuracy. 

© 2017 Published by Elsevier B.V. 
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. Introduction 

Initiation, progression, and therapeutic response in cancer is

argely influenced by tumor microenvironment [19,21,31,36] . Quan-

itative analysis of tumor microenvironment in histopathology im-

ges has potential to predict or measure response to therapy.

n cancer, changes in the stroma tend to drive tumor invasion

nd metastasis. The stroma is essential for the maintenance of

pithelial tissues. When the epithelium changes, the stroma in-

vitably changes also [12] . Therefore, computational analysis can

ssist researchers and clinicians with quantification of the fea-

ures that they already assess qualitatively or may lead to discov-

ry of new informative features. In [4] , Beck et al. combined im-

ge derived morphometric features with image classification and

achine learning techniques to study prognostic information from

tromal and epithelial regions of breast tumors. Since epithelial

nd stromal regions have different significance for prognosis, seg-

entation of tumor into epithelial vs. stromal regions constitutes

 first step for many histopathology image analysis tasks [41] . Qu

t al. [30] and Linder et al. [23] extract texture features at pixel

r block levels and use support vector machine (SVM) classifier

o segment H&E stained histopathology images into epithelial and

tromal regions. In [8] , we proposed an epithelium-stroma classi-
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cation system that operates on superpixels rather than pixels or

locks. These systems use carefully selected features as input to

heir epithelium-stroma classifiers. Performance of pattern recog-

ition and classification tasks greatly depends on the features they

se [7] . For complex data (i.e. images of H&E stained specimens)

anually selected features may not always capture the best repre-

entation to delineate the underlying structure. 

Deep learning methods [5] enable automatic learning of com-

lex features required for visual pattern recognition. Very recently,

eep learning methods have shown outstanding performance in

omputer vision and pattern recognition tasks, not only in classical

omputer vision but also in biomedical applications : Ciresan et al.

on ISBI brain image segmentation challenge [10] , and MICCAI mi-

osis detection challenge [11] . This deep learning method not only

on against hand-crafted pipelines but also got a score compara-

le to the inter-observer agreement among pathologists [40] . 

In this paper, we present our image processing and machine

earning pipeline developed for stromal vs. epithelial tissue iden-

ification from images of H&E stained specimens. We propose a

ybrid system that combines strengths of deep learning feature

earning and classification capabilities (specifically using deep con-

olutional neural networks) with boundary localization accuracy of

mage segmentation. Each histologic image is first sub-divided into

atches. Deep convolutional neural networks (CNNs) are trained

n these patches to extract hierarchical features from raw pixels of

&E stain images and to perform epithelium vs. stroma classifica-
 with deep learning for enhanced classification of epithelial and 
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Table 1 

Architecture of the CNN training model. 

Layer Layer type Parameters 

number 

Layer 1 Batch normalization –

Layer 2 Convolution Kernel number: 32 

Kernel size: 5 × 5 × 3 

Layer 3 Pooling Pooling region size: 3 × 3 

Pooling method: max-pooling 

Activation function: ReLU 

Layer 4 Convolution Kernel number: 32 

Kernel size: 5 × 5 × 32 

Activation function: ReLU 

Layer 5 Pooling Pooling region size: 3 × 3 

Pooling method: average-pooling 

Layer 6 Dropout Dropout with learning rate: 0.5 

Layer 7 Convolution Kernel number: 64 

Kernel size: 5 × 5 × 32 

Activation function: ReLU 

Layer 8 Pooling Pooling region size: 3 × 3 

Pooling method: average-pooling 

Layer 9 Convolution Kernel number: 64 

Kernel size: 4 × 4 × 64 

Activation function: ReLU 

Layer 10 Dropout Dropout with learning rate: 0.5 

Layer 11 Fully-connected Kernel number: 2 

Kernel size: 1 × 1 × 64 

Activation function: Softmax with log-loss 
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tion. The classification results from deep convolutional neural net-

works are further fused with an explicit segmentation results for

improved performance. Also, instead of using raw intensity/color

values to segment the images into coherent regions, learned

features from CNN networks are used as pixel-wise raw features.

Feature maps used in segmentation were obtained by convolving

the input image with the filters learned at the first convolutional

layer. The resulted feature maps are considered as the feature

vector for SLIC and HFCM segmentation. This is the first step of a

broader multidisciplinary study to analyze predictive and prognos-

tic value of morphological features of tumor microenvironment. 

Very recently, few other studies have used deep learning ap-

proaches for epithelium stroma classification [20,43] . Huang

et al. [20] use CNNs with unsupervised domain adaptation.

However, rather than tissue segmentation classification of image

patches is addressed. Xu et al. [43] use CNNs for tissue segmenta-

tion. While our paper and Xu et al. [43] rely on CNN classification

and superpixels, the two systems differ in (1) CNN architecture, (2)

segmentation method, and (3) particularly in fusion scheme used.

Xu et al. [43] pre-segment the images, resize the obtained super-

pixels into fixed-sized square images, and feed them to a CNN. Pre-

segmentation makes the whole system too sensitive to segmenta-

tion accuracy as well as shape of epithelial and stromal regions.

Our post-segmentation approach overcomes both problems, mak-

ing the system more robust against segmentation method and re-

gion shape, while not artificially altering texture of a region. Post-

segmentation also allows identification of mixed regions, which

can then be further sub-divided to improve the results. 

This paper is organized as follows. Section 2 describes details of

deep learning based stroma-epithelium classification. Section 3 de-

scribes integration of segmentation to classification. Our exper-

imental results on Stanford Tissue Microarray Database [4] are

given in Section 4 . Section 5 concludes the paper and gives future

directions. 

2. Stroma-epithelium classification using CNN 

Image analysis pipelines traditionally involve a series of steps

including pre-processing, image segmentation, training classifiers

with carefully selected features, and classification. The perfor-

mance of these systems is highly dependent on the selected fea-

tures and the accuracies of the preceding steps. In recent years,

deep artificial neural network approaches have shown outstand-

ing performance in computer vision and pattern recognition tasks.

Deep learning provides methods that enable automated learning

of feature sets for particular problems as opposed to designing

and/or selecting features. Convolutional neural network (CNN) is

one of the most popular types of deep learning models used in

image analysis. CNNs have been mostly used in various image or

image block classification tasks including cell or nuclei classifica-

tion [11,14,25,29,42] . Only very recently, CNNs have started to be

adapted to semantic image segmentation tasks [13,26,28,32] . 

A convolutional neural network is a function g mapping data x

(i.e. an image), to an output vector y . The function g is the com-

position of a sequence of simpler functions f l , which are called

computational blocks or layers; g = f L ◦ . . . ◦ f 1 . Assuming the net-

work input is x 0 = x, and the network outputs are, x 1 , x 2 , . . . , x L .

Each output x l = f l (x l−1 ; w l ) is computed from the previous output

x l−1 by applying the function f l with parameters w l [39] . The net-

work is called convolutional network, because the functions f l act

as a local and translation invariant operator. Stochastic gradient de-

scent (SGD) and backpropagation algorithms are used to fine-tune

or learn CNN parameters. CNNs output a vector of class probabili-

ties ˆ y = f (x ) for all image classes or labels. 

We have developed a convolution neural network architecture

to identify epithelium and stroma regions in H&E stained tissue
Please cite this article as: Z. Al-Milaji et al., Integrating segmentation

stromal tissues in H&E images, Pattern Recognition Letters (2017), http
mages. The proposed CNN architecture is implemented using Mat-

onvNet [39] toolbox and consists of eleven layers as described in

able 1 . The architecture uses four types of layers: (1) convolution,

2) pooling, (3) fully connected, and (4) dropout. Convolutional lay-

rs convolve the output of their previous layers with a set of learn-

ble filters. Most of the existing CNN architectures or pre-trained

etworks are initially designed for natural or general images which

re considerably different than histopathology images. It may be

ossible to repurpose some of those architectures or pre-trained

etworks with appropriate transfer learning steps. However, for

his particular task where the characteristics of the subject mat-

er and resulting images are far too different than general natural

mages, we opted to use a specific CNN architecture. Custom archi-

ectures are widely used in biomedical classification tasks includ-

ng the earlier epithelium-stroma classification network in Xu et al.

43] . The proposed architecture was mostly guided by the size of

ur input patch, which we determined empirically by balancing

egion purity ( Fig. 2 ) and information support. As CNN input, we

ave tested various patch sizes and empirically selected 32 × 32.

nput patch size determined number of polling layers in the ar-

hitecture. Since the number of filters and hidden layers depend

n the distribution and complexity of the input patch, as we go

n depth down the network we increase the number of filters [34] .

e set the filter sizes of conv layers into 5 × 5 and 4 × 4 since they

re big enough to capture the scale of most edges and salient fea-

ures in the patch. Larger filters may result in skipping relevant in-

ormation specially in the first conv layers [22,44] . Dropout layers

ere added to address the problem of overfitting. The last layer, a

ully connected layer, performs the classification task. We initial-

zed the weights of the neurons to small random numbers, known

s symmetry breaking. We initialized the neuron biases in the con-

olutional layers and in the fully-connected hidden layers with the

onstant 0 since the symmetry breaking is provided by the small

andom numbers in the weights [6] . 

.1. Data set 

Two (TMA) data sets were evaluated on this work. Netherlands

ancer Institute (NKI) and Vancouver General Hospital (VGH).

he data sets consist of 157 images (106 NKI, 51 VGH) of size
 with deep learning for enhanced classification of epithelial and 
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Fig. 1. Architecture of the CNN labeling model using (a) non-overlapping rectangular image blocks; (b) sliding window on whole input image. Conv, P, and FC represent 

convolutional, pooling, and fully connected layers, respectively. 
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128 × 720 pixels in which Epithelial and Stromal regions were

anually annotated by pathologists. For the NKI, five fold cross

alidation is performed. We used 80% of the images for training

nd 20% of the images for tesring. For comparison, we used 69 NKI

mages for training and 37 NKI images for testing. For the VGH, we

sed 36 images for training and 15 images for testing. 

.2. Training 

Original tissue images and corresponding expert labeled

round-truth segmentation masks are partitioned into non-

verlapping image patches ( Fig. 2 ). Each patch is normalized to

ave zero mean and unit variance [27] . Patch normalization is a

ommon practice for CNN [3,15,33,37] . Normalization is particu-

arly important for histopathology images because of possible large

ariations in staining. The network is trained by comparing ex-

racted labels from corresponding expert labeled images to the

ampled patches. Mixed-class patches and patches with large un-

ecided (by pathologist) classes or background regions are dis-

arded in training. We have labeled blocks that have 80% or more

f their pixels from one class as pure, remaining blocks as mixed.

or our 32 × 32 block size the percentages of mixed class blocks

not used in training) were 31.19% for NKI dataset and 28.28% for

GH dataset. After a specific number of epochs, the training is

topped. Each convolution layer in those networks learns filter co-

fficients which represent the discriminative features. CNN clas-

ification layer produces an output of two channels. These chan-

els represent confidence scores for epithelium and stroma classes.

lass label for a block or pixel is determined by picking the corre-

ponding output channel with the maximum confidence score. 

.3. Testing 

The CNN architecture described so far classifies an image block

s epithelium or stroma. Unlike the usual application of a CNN that

nvolves classifying whole images into one of the classes or de-

ecting the existence of certain objects (faces, vehicles, etc.) within

pproximate bounding boxes, the goal of the proposed system is

o detect epithelium and stroma regions and accurately delineate

heir boundaries within the images. In order to achieve this goal,

e implemented and compared three different labeling schemes.

e then integrated the CNN classification output with region seg-

entation results to improve epithelium/stroma region boundary

ocalization. Here, we will first describe the three CNN labeling

chemes. In all cases, training is performed with non-overlapping

egular rectangular image patches as described above. 

(a) Non-overlapping blocks: This is the simplest form of labeling,

here we partition the input image into a set of non-overlapping

ectangular image blocks, and each block is fed to the trained CNN

ndependently. A single class label corresponding to epithelium or

troma is obtained for each block. Class labels for the input blocks

re stitched together to form a coarse segmentation map for the
Please cite this article as: Z. Al-Milaji et al., Integrating segmentation

stromal tissues in H&E images, Pattern Recognition Letters (2017), http
nput image. The resolution of the output image is 1/( bsize × bsize ),

here bsize is block size ( bsize = 32 for our experiments). Resolu-

ion of the output label image can be increased by decreasing block

ize. However, very small blocks may not capture enough informa-

ion to reliably classify the local tissue region. Fig. 1 (a) shows this

cheme. 

(b) Overlapping blocks and voting: In order to increase the reso-

ution of the output label map without decreasing block size, we

ubdivide the input image into blocks overlapped by half block

ize. Each block is processed as described above. Each pixel in the

nput image gets covered by four overlapping blocks. Class label for

ach pixel is then determined by classification with highest confi-

ence score. 

(c) Full image labeling: Ideally, a brute force sliding window ap-

roach where a block is extracted around each pixel would give

he highest resolution for the label map. Yet this technique is com-

utationally very expensive. In order to avoid repeated convolu-

ions for the overlapping regions, Su et al. [35] proposed a CNN

abeling scheme where the whole image is directly fed to the net-

ork without dividing into regular blocks and equivalent of sliding

indow class labels are obtained all at once. Due to the pooling

ownsampling, the output label map is slightly smaller than the

nput image. Therefore, to retain the original tested image size, this

ap is upsampled. Fig. 1 (b) shows this scheme. 

. Integration of segmentation with CNN 

While some recent works on stroma-epithelium classification

perate on pixels or blocks [23,30] , our pipeline includes an ex-

licit segmentation module. Interactions between supervised clas-

ification and unsupervised segmentation occurs at two different

evels: (1) learned features by CNN are used as input to segmenta-

ion to improve segmentation performance; (2) region boundaries

roduced by segmentation are used to improve tissue class bound-

ry adherence for classification. This mutual interaction between

upervised classification with unsupervised segmentation ( Fig. 3 )

akes full advantage of the strengths of these two classes of ap-

roaches. In this study, we used two segmentation approaches:

imple Linear Iterative Clustering (SLIC superpixels) described in

1,38] , and HFCM segmentation [8] , developed by our group de-

cribed below. 

.1. Hierarchical fuzzy C-means with spatial constraint (HFCM) 

This work extends our works in [9,17,18] . The classical Fuzzy C-

eans (FCM) algorithm minimizes an objective function defined

y the sum of similarity measures. It is an iterative process that

inimizes the distance between each point and the prototypes.

t does not incorporate any spatial information. Spatial correlation

nd multiresolution bring robustness and efficiency to the fuzzy c-

eans algorithm [18] . HFCM extends FCM by incorporating spatial
 with deep learning for enhanced classification of epithelial and 
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Fig. 2. Ground-truth class label assignment to image patches. 

Fig. 3. Mutual interaction between supervised deep learning and unsupervised re- 

gion segmentation. 
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information to its objective function: 

J SCM 

(U, V ) = 

C ∑ 

i =1 

N ∑ 

j=1 

u 

m 

i j ‖ x j − v i ‖ 

2 

+ 

n 

2 

α
C ∑ 

i =1 

N ∑ 

j=1 

u 

m 

i j e 
−∑ 

k ∈ � u m 
ik + β

C ∑ 

i =1 

N ∑ 

j=1 

u 

m 

i j f 
(n −1) 
i 

(x j ) 

(1)

where X = { x 1 , x 2 , . . . , x N } denotes data (pixel feature vectors). V =
{ v 1 , v 2 , . . . , v C } represents the prototypes (clusters centers). � is a

set of neighbors ( k � = j ). f (n −1) 
i 

(x j ) is the point x j ’s ancestor mem-

bership function to the i th cluster in lower layer ( n − 1 ). Param-

eters α and β control the influence of the associated terms. α is

multiplied by scale factor ( n 2 ) to reduce the effect of spatial con-

straint at lower levels. The HFCM objective function (1) contains

three terms. The first term is the same as in regular FCM. The sec-

ond term is a spatial penalty that forces neighboring pixels to be-

long to the same class. It reaches a minimum when the member-

ship value of neighbors for a particular cluster is large. The third

term incorporates the relationship between classes of elements at

different resolutions for more feature consistency. Optimization of
Fig. 4. SLIC/HFCM segmentation on CNN learned feature maps. Feature maps used in seg

the first convolutional layer of the proposed and trained CNN architecture. 

Please cite this article as: Z. Al-Milaji et al., Integrating segmentation
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1) with respect to U is done in a classical way by a Lagrange mul-

iplier technique. 

 SCM 

(U, V ) = 

N ∑ 

j=1 

λ j (1 −
C ∑ 

i =1 

u i j ) + 

C ∑ 

i =1 

N ∑ 

j=1 

u 

m 

i j 

×
(
‖ x j − v i ‖ 

2 + 

n 

2 

αe −
∑ 

k ∈ � u m 
ik + β f (n −1) 

i 
(x j ) 

)
(2)

After taking the derivative of Eq. (2) vs. u ij , solving for u ij , and

olving for λj with respect to the constraint eventually leads to the

ollowing membership update equation: 

 i j = 

1 

∑ C 
p=1 

(
‖ x j −v i ‖ 2 + n 2 αe 

−∑ 
k ∈ � u m 

ik + β f (n −1) 
i 

(x j ) 

‖ x j −v p ‖ 2 + n 2 αe 
−∑ 

k ∈ � u m 
pk + β f (n −1) 

p (x j ) 

) 1 
m −1 

(3)

s in (3) , u ij , the membership value of a point j to cluster i , de-

ends on membership values of its neighbors and ancestor in the

yramidal representation. Regularization is controlled by weights

and β . The prototype update equation is the same as in stan-

ard FCM, since the second component of (1) does not depend on

 i . Centroids update obeys the equation: 

 i = 

( 

N ∑ 

j=1 

u 

m 

i j x j 

) 

/ 

( 

N ∑ 

j=1 

u 

m 

i j 

) 

(4)

Instead of using raw intensity/color values to segment the im-

ges into coherent regions, feature maps from CNN networks were

sed as pixel-wise raw features. Feature maps used in segmen-

ation were obtained by convolving the input image with the fil-

ers learned at the first convolutional layer. The resulted feature

aps were considered as the feature vector for SLIC and HFCM

egmentation algorithms as shown in Fig. 4 . The new features have

mproved the performance of the segmentation results once used

ith CNN classification results. 

.2. Integration of region segmentation with CNN classification 

Convolutional neural networks (CNNs) are often used as pixel-

ise classification tools where a small image patch centered on a

ixel is used as input to the classifier and a single class label is

btained. Efficient segmentation using CNNs has only started to be

xplored very recently [16,24,35] . 

In this paper, we propose a hybrid system that combines

trengths of CNN feature learning and classification capabilities

ith boundary localization accuracy of image segmentation. The
mentation were obtained by convolving the input image with the filters learned at 

 with deep learning for enhanced classification of epithelial and 
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Fig. 5. Sample epithelial vs. stromal tissue classification results using different CNN labeling schemes. (a) original image, (b) manual ground truth (red: epithelium, green: 

stroma, black: unknown or ignore), (c) non-overlapping blocks, (d) overlapping blocks and voting, (e) full image processing. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Sample segmentation results for two images of Stanford TMA database [4] . The results correspond to HFCM partitions and SLIC superpixels [1] . (a) HFCM segmentation 

boundaries overlaid on original image, (b) HFCM partitions, (c) SLIC segmentation boundaries overlaid on original image, (d) SLIC superpixels. 

Table 2 

Epithelial vs. stromal tissue identification accuracies for CNN-only and CNN-hybrid systems for three CNN labeling 

schemes and two region segmentation methods. 

Classification CNN CNN CNN CNN CNN 

Segmentation / SLIC RGB SLIC CNN HFCM RGB HFCM CN N + RGB 

NonOverlappingBlocks 77.73 81.66 83.52 86.22 88.03 

OverlappingBlocks + Voting 80.14 82.12 84.12 86.16 87.73 

Full image 81.39 82.79 84.33 86.85 89.32 
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Fig. 7. CNN intermediate representation: 360 × 564 × 32 feature set from the fourth 

layer when using full image labeling instead of image blocks. These automatically 

extracted features are also used as inputs to image segmentation. 

s  

b  

m  

t  
uperpixels produced by SLIC or HFCM are labeled by using the la-

el maps produced by the CNN. This scheme has an added advan-

age of fusing global and local image information. Through training,

NN learns tissue characteristics across multiple images whereas

mage segmentation relies on information from a single image and

etter adapts to batch variations between specimen images. Fusion

s implemented as follows: 

1. Image P is partitioned into superpixels P i using SLIC or HFCM

segmentation methods ( P = ∪P i ). 

2. CNN classification output is resized to original image size and

assigned to a matrix C where C(i, j) ∈ { 0 , 1 } corresponds to ep-

ithelium or stroma classes. 

3. For each partition P i 

(a) Pixel counts for each class k is computed: 

Count( P i , k ) = 

∑ 

p i ∈ P i 
δ(C(p i ) − k ) 

(b) Refined class for the partition C R ( P i ) is determined as the

majority class in region P i 
C R ( P i ) = arg max 

k ∈{ 0 , 1 } 
(Count( P i , k )) 

here is a tradeoff between information content and purity of an

mage patch. As expected, when the block size becomes larger,

locks get more heterogeneous (mixed class), and assigning the

ajority class to the center pixel introduces errors (i.e. the center

ixel does not necessarily belong to the majority class within the

lock at the boundaries of the classes). Even if the ground truth is

sed to assign classes to the blocks, this “quantization error” still

appens. On the other hand, smaller blocks do not capture enough

exture or structure information and fail to reliably determine tis-
Please cite this article as: Z. Al-Milaji et al., Integrating segmentation
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ue type (e.g. tissue class of a single pixel cannot be determined

y just its color). While larger blocks contain more context infor-

ation that can help classification, the likelihood of having both

issue classes in the block also increases with the block size con-
 with deep learning for enhanced classification of epithelial and 
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Fig. 8. Example of fusing CNN classification with region segmentation. Row 1: boundaries of segmentation overlaid on CNN class labels. Row 2: fused output. Fusion 

increases CNN-only classification accuracy from 81% to (a) 84% for SLIC, and to (b) 90% for HFCM segmentation in non-overlapping block labeling. Fusion increases CNN-only 

classification accuracy from 86% to (c) 90% for SLIC, and to (d) 94% for HFCM segmentation in full image labeling. 

Fig. 9. Experimental results comparing our proposed methods (dark bars) with methods proposed in [43] (gray bars). Accuracies for different combinations of segmentation 

(none, SLIC Ncut, HFCM), feature sets (RGB only, RGB+CNN learned), and classification (CNN, SVM): (a) on NKI dataset [4] , (b) on VGH dataset [4] . 

Please cite this article as: Z. Al-Milaji et al., Integrating segmentation with deep learning for enhanced classification of epithelial and 
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Table 3 

The quantitative evaluation of classification results on NKI and VGH data sets. 

Data sets Models TPR TNR PPV NPV FPR FDR FNR ACC F1 MCC 

NKI DCNN-SLIC-SMC [43] 86.31 82.15 84.11 84.60 17.85 15.89 13.66 84.34 85.21 68.60 

CNN SW only 81.43 82.89 84.11 80.05 17.11 15.89 18.57 81.69 82.75 64.24 

CNN SW +HFCM CN N + RGB 89.48 85.96 85.94 89.50 14.04 14.06 10.52 87.19 87.68 75.44 

CNN SW +HFCM RGB 89.66 85.92 85.86 89.71 14.08 14.14 10.34 87.17 87.72 75.58 

CNN SW +SLIC CNN 85.02 85.83 86.64 84.13 14.17 13.36 14.98 85.13 85.82 70.81 

CNN SW +SLIC RGB 83.62 84.46 85.38 82.61 15.54 14.62 16.38 83.83 84.49 68.04 

VGH DCNN-Ncut-SVM [43] 88.29 88.40 89.93 86.55 11.60 10.07 11.71 88.34 89.10 76.59 

CNN SW only 90.32 88.15 92.98 83.97 11.85 7.02 9.68 89.14 91.63 77.70 

CNN SW +HFCM CN N + RGB 91.96 92.21 95.45 86.59 7.79 4.55 8.04 91.04 93.67 83.10 

CNN SW +HFCM RGB 91.16 91.70 95.20 85.15 8.30 4.80 8.84 90.41 93.14 81.60 

CNN SW +SLIC CNN 91.66 90.71 94.51 86.17 9.29 5.49 8.34 90.83 93.06 81.52 

CNN SW +SLIC RGB 89.03 89.52 94.08 81.37 10.48 5.92 10.97 88.39 91.49 76.99 
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using the classification process. CNN output suffers from boundary

ocalization inaccuracies. On the other hand, image segmentation

ethods such as SLIC [1,2] or HFCM [8,9] lack the capability to de-

ermine tissue class. However, these segmentation methods group

ixels together with similar features into superpixels that adhere

ell to actual tissue boundaries. 

. Experimental results 

We have implemented the proposed deep convolutional neu-

al network architecture using MatConvNet toolbox [39] . The net-

ork is trained and tested on Stanford Tissue Microarray Database

4] for classification of epithelial vs. stromal tissue. Expert labeled

round truth labels presented in [4] are used for supervised train-

ng and evaluation with a five fold cross validation. 

Sample CNN classification results obtained by using different la-

eling schemes are shown in Fig. 5 . As expected, full image label-

ng provides the highest resolution and hence the highest accu-

acy. Our framework integrates supervised classification with un-

upervised segmentation. Two methods of image segmentation are

onsidered SLIC superpixels [1] and our HFCM (Hierarchical Fuzzy

-means with Spatial Constraint) clustering [8,9] ( Fig. 6 ). 

We have modified both SLIC and HFCM segmentation schemes

o enable use of learned features from CNN in addition to color

eatures. Fig. 7 shows sample multi-scale features learned at inter-

ediate layers of CNN and used as input to segmentation. CNN

lassification results are further fused with unsupervised region

egmentation results to better reflect irregular tissue boundaries

s described above. Fig. 8 shows sample integrated results. For the

ample image in Fig. 8 , CNN produces classification results with

ccuracies of 81% and 86% for non-overlapping block vs. full image

abeling schemes. Fusion with SLIC superpixels increases these ac-

uracies to 84% and 90%, respectively. Fusion with HFCM partitions

urther increases these accuracies to 90% and 94%, respectively. 

Table 2 presents a summary of our quantitative performance

valuation results for CNN-only and CNN-hybrid systems for three

ifferent labeling schemes, two different region segmentation

ethods, and two different feature sets (raw color vs. learned CNN

eatures). The highest accuracy is reached by combining CNN clas-

ification with HFCM segmentation on RGB color plus CNN learned

eatures. 

Very Recently, another epithelium-stroma classification sys-

em combining information from CNN networks with region seg-

entation has been proposed [43] . In Fig. 9 , we compare the

erformances of different configurations of our system (black

ars) against different configurations of the system presented in

43] (gray bars). Our results outperformed results presented in

43] , in terms of best results 87.19% vs. 84.34% for NKI dataset

nd 91.04% vs. 88.34% for VGH dataset; in terms of CNN classifi-

ation only results 83.99% vs. 79.25% for NKI dataset and 89.14%
Please cite this article as: Z. Al-Milaji et al., Integrating segmentation

stromal tissues in H&E images, Pattern Recognition Letters (2017), http
s. 81.69% for VGH dataset; and in terms of CNN classification

ombined with SLIC segmentation (SLIC on RGB image for [43] vs.

LIC on CNN learned features for ours). 85.13% vs. 84.34% for NKI

ataset and 90.83% vs. 85.23% for VGH dataset; Our best results

or both NKI and VGH datasets are obtained from CNN classifica-

ion integrated with HFCM segmentation using CNN learned fea-

ures ( C NN + HF C M CN N + RGB ). Best results for [43] are obtained us-

ng CNN classification with SLIC segmentation (DCNN-SLIC-SMC)

or NKI and using CNN features with SVM classification and Nor-

alized Cut segmentation (DCNN-Ncut-SVM) for VGH dataset. 

The quantitative performance for epithelium-stroma classifica-

ion on NKI and VGH data sets compared to the state of the art

s shown in Table 3 . True Positive Rate (TPR), True Negative Rate

TNR), Positive Predictive Value (PPV), Negative Predictive Value

NPV), False Positive Rate (FPR), False Discovery Rate (FDR), False

egative Rate (FNR), Accuracy (ACC), F1 Score (F1), and Matthews

orrelation Coefficient (MCC) outperform the approaches described

n [43] . Our improved performance are due to three factors: 

1. Deeper CNN architecture that better capture complex multi-

scale tissues features. Our CNN architecture consists of 4 convo-

lution, 3 pooling, 1 fully connected, 2 dropout layers compared

to 2 convolution, 2 pooling, and 2 fully connected layers in [43] .

2. HFCM segmentation vs. SLIC or Ncut segmentation. The hierar-

chical nature of our HFCM segmentation scheme produces co-

herent partitions with less mixed-class regions, which in turn

translate to better classification accuracy. 

3. Use of CNN learned features in segmentation (for both SLIC

superpixels and HFCM clustering) improves segmentation and

translates to better integrated system output. 

. Conclusion and future work 

We have presented a hybrid image processing and machine

earning system for identification of stromal vs. epithelial tissue

egions from images of H&E stained specimens. The proposed sys-

em combines strengths of deep learning (feature learning across

ultiple images and classification capabilities) with those of im-

ge segmentation (accuracy of tissue boundary localization). The

roposed framework was systemically evaluated on a set of expert

nnotated images for three different labeling schemes, two differ-

nt segmentation approaches, and two different feature sets. Com-

ining deep learning with region segmentation shows promising

esults in capturing complex features of stromal and epithelial tis-

ues. Utilizing automatically extracted features of CNN along with

he regular color features improves classification accuracy even fur-

her. We are currently working on using the presented approach as

 first step in quantitative analysis of morphological features of tu-

or microenvironment. 
 with deep learning for enhanced classification of epithelial and 
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