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ABSTRACT

The flux tensor motion flow algorithm is a versatile computer
vision technique for robustly detecting moving objects in clut-
tered scenes. The flux tensor calculation has a high compu-
tational workload consisting of 3-D spatiotemporal filtering
operations combined with 3-D weighted integration opera-
tions for estimating local averages of the flux tensor matrix
trace. In order to achieve efficient real-time processing of
high bandwidth video streams a data parallel multicore al-
gorithm was developed for the Cell Broadband Engine (BE)
processor and evaluated in terms of the energy to computa-
tion efficiency compared to a fast sequential CPU implemen-
tation. Our multicore implementation is 12 to 40 times faster
than the sequential version for HD video using a single PS-3
Cell/B.E. processor and is faster than realtime for a range of
filter configurations and video frame sizes. We report on the
power efficiency measured in terms of performance per watt
for the Cell/B.E. implementation which is 50 to 160 times
better than the sequential version for HD video depending on
the filter size. The results suggest an additional strategy to
trade off output image quality or nominal change in accuracy
of detection for improved energy efficiency in suitable envi-
ronments.

Index Terms— Parallel image processing, multicore
Sony Toshiba IBM Cell/B.E. processor, realtime video/image
processing, 3D convolution, percent peak performance

1. INTRODUCTION

Realtime persistent moving object detection and tracking for
surveillance applications is a computationally challenging
problem. Current trends in distributed sensor networks and
agile systems favors the processing of large volumes of raw
data closer to the sensor to reduce bandwidth requirements,
extract high priority scene information more rapidly and ex-
change integrated information for cooperative downstream

processing. Energy efficiency has become a leading design
constraint for both hardware and software. Algorithmic ap-
proaches to improve energy efficiencies is complementary to
hardware and systems-based approaches. Switching between
active and sleep (or multiple low-power) modes in the idle
state using a randomized algorithm for state transitions, dy-
namic speed-scaling using a job scheduler with fixed or flex-
ible completion deadlines, and adaptive network topologies
are several approaches that are being actively investigated
for energy-efficient algorithms [1]. Multicore parallel pro-
cessing environments are widely available today for which
energy efficient algorithms are equally important and have
greater flexibility in that the number of processors used can
be dynamically changed based on a completion time versus
energy tradeoff. Scheduling algorithms to minimize total
energy across identical parallel processors has been shownto
be NP-hard even for unit-sized jobs [2].

In this paper we characterize the workload of the flux ten-
sor algorithm for moving object detection in high bandwidth
video streams. The parallel flux tensor algorithm exhibits
super-linear speed-up due to the vectorization, loop unrolling,
FMA operations and double-buffering optimizations for the
Cell/B.E. architecture which along with the power efficiency
of the Cell/B.E. processor provides a tremendous improve-
ment in the performance per watt metric compared to an op-
timized sequential implementation. The variation in perfor-
mance efficiency for different flux tensor filter sizes further
suggests another avenue for energy efficient algorithm design
– namelyoutput image quality. That is trading off the accu-
racy of the flux tensor operator under certain environmental
conditions using a slightly smaller filter to reduce energy use
but with marginal impact on moving object detection.

Power efficient real-time flux tensor processing is re-
quired in a variety of operational scenarios including video-
based net-centric exploitation and tracking on airborne plat-
forms and ground-based multi-sensor imaging for force pro-
tection. Synergistic collaborative computation exploiting



net-centricity can enable distributed interacting compute and
sensor nodes to accomplish mission goals more effectively in
terms of survivability, ease of fielding, and reconfigurability
using a modular joint information management system [3].
Such agile sensor networks need to be further enhanced to
minimize overall power consumption under the constraint of
still yielding the best exploitable information in a timelyman-
ner. Embedded video processing requires efficient algorithms
in terms of power-aware computing as well as parallelization
to enable real time performance in analyzing complex video.

There are a number of challenging computer vision prob-
lems that need to be solved for stabilizing, detecting, extract-
ing, verifying and tracking moving objects in airborne video
[4–8]. In this paper we focus on one part of the video process-
ing pipeline, namely power-efficient realtime moving object
detection that is robust to natural environmental conditions
such as illumination variation, shadows, clutter, and noise. In
order to reliably detect moving blobs in unconstrained video,
we use the recently proposedflux tensor(JF ) operator [9,10],
which captures the temporal variations of the optical flow
field within the local 3D spatiotemporal volume. The flux
tensor detects only the moving structures, and is less sensitive
to illumination, focus and related problems compared to other
moving object detection algorithms including classical back-
ground subtraction, mixture of Gaussians and 3D structure
tensor orientation estimation. The flux tensor motion detec-
tion results have in general better spatial coherency enabling
more accurate motion-based object segmentation. The flux
tensor is more efficient in comparison to the 3D grayscale
structure tensor since motion information is more directlyin-
corporated in the flux calculation which is less expensive than
eigenvalue decompositions at each pixel in the image.

This paper describes a parallel implementation of the
flux tensor optimized for the multicore Cell/B.E. processor
for real-time processing of high-bandwidth video streams in
power constrained environments. Some early supercomput-
ing architectures like the SIMD MasPar were ideally suited
for image analysis tasks like deformable motion estima-
tion [11]. The PS-3 Cell/B.E. processor provides a modern
power efficient single chip high performance computational
platform, with seven heterogenous cores - one Power Pro-
cessing Element (PPE) and six (of eight) active Synergistic
Processing Elements (SPEs). The PPE is a 64-bit proces-
sor that is binary-compliant with the PowerPC 970 but with a
simpler architecture supporting dual issue, in-order execution.
Each SPE consists of a 3.2 GHz Synergistic Processing Unit
(SPU), a large 128-entry 128-bit vector register file, a small
256 Kbytes of private local store memory, short pipelines,
and a memory-flow controller (MFC) to access the 256 MB
of shared main memory using non-blocking DMA commands
at 25.6 Gbytes/s. The SPUs are in-order dual-issue statically
scheduled short-vector number crunchers with support for
SIMD instructions operating on packed multiple data value
without dynamic branch prediction. The PS-3 version of the

Cell processor is optimized for single-precision arithmetic
(double-precision peak is less than 11 GFLOP/s) with trunca-
tion rounding. Each SPE can perform 25.6 GFLOP/s single-
precision floating point operations at 3.2GHz. Although
the six SPEs can deliver 153.6 GFLOP/s peak performance,
memory-intensive single-precision calculations max out at
12.8 GFLOP/s (and double-precision at 6.4 GFLOP/s) due to
memory bandwidth limits [12]. The Cell/B.E. uses the single
program multiple data (SPMD) parallel processing model
which is more powerful than the single instruction multiple
data (SIMD) model for heterogeneous multithreaded data
flow execution mapped onto SPEs.

The Cell/B.E. offered one of the first commercial imple-
mentations of a power efficient high performance single chip
multiprocessor with a significant number of general-purpose
programmable cores targeting a broad set of workloads [13].
A good description of scientific computing and programming
on the Cell is provided in [14] and other details of implement-
ing scientific computing kernels and programming memory
hierarchies can be found in [15, 16]. In [17], the authors
discuss interesting code transformation techniques for mov-
ing scientific simulation codes to the Cell/B.E. and [18] de-
scribes the fastest Fourier transform for the Cell processor
(18.6 GFLOP/s). Many programming frameworks/platforms
like RapidMind [19], MFC (Multicore Framework) by Mer-
cury [20] have also emerged to support efficient program-
ming for multicore processors. In order to reduce complexi-
ties of task management, multithreading and synchronization
for programming the Cell/B.E. some tools for mapping serial
code in a semi-automatic fashion are in development [21,22].
We first give a brief overview of the flux tensor method and
discuss the sequential implementation along with the com-
putation and memory characteristics. Then we discuss the
parallel architecture issues involved in our Cell/B.E. imple-
mentation. A description of the data partitioning scheme and
parallelization procedures to map the flux tensor algorithm
onto the Cell/B.E. cores is followed by experimental results.

2. FLUX TENSOR-BASED MOTION DETECTION

The 3D flux tensor was shown to be a robust and computation-
ally efficient method for coherent detection of moving regions
in video [9,10,23]. The flux tensor is a more efficient opera-
tor in comparison to the 3D grayscale structure tensor [24,25]
since motion information is more directly incorporated in the
flux calculation without the necessity for computing eigen-
value decompositions as with the 3D grayscale structure ten-
sor. We summarize the mathematical description of the struc-
ture tensor and flux tensor multidimensional orientation esti-
mation methods in order to provide a background on the types
of operators needed to compute the flux tensor quantity for ro-
bust motion estimation.

In order to reliably detect moving structureswithoutper-
forming expensive eigenvalue decompositions, theflux tensor



has been shown to be a more robust operator in comparison to
the more widely used structure or orientation tensor [10, 23].
The flux tensor is composed of the temporal variations in the
optical flow field within the local 3D spatiotemporal volume.
Computing temporal derivative of the optical flow equation
and setting the image brightness acceleration to zero gives,

∂

∂t

(

dI(x)

dt

)

= Ixt vx + Iyt vy + Itt vt, (1)

whereI(x) is the spatiotemporal image volume,t is time,
v(x) = [vx, vy, vt] is the optic-flow vector atx, and the sec-
ond derivative terms are defined as,

Ixt =
∂2I(x)

∂x ∂t
, Iyt =

∂2I(x)

∂y ∂t
, Itt =

∂2I(x)

∂t ∂t
(2)

The Ixt and Iyt terms capture information about moving
edges or gradients in the video whileItt incorporates in-
formation on moving textures and temporal illumination
changes. A total least squares solution to Eq. 1 leads to the
structure tensor matrix,JF(x, W (x,y)), with an integration
kernelW (x,y). We use the trace of the flux tensor matrix,
referred to asTr JF , that is defined below,

Tr JF =

∫

Ω

W (x − y)(I2

xt(y) + I2

yt(y) + I2

tt(y))dy (3)

as the computational operator to reliably detect moving re-
gions in video streams. A spatially invariant integration ker-
nel W (x − y), also referred to as the local averaging opera-
tor, is used for low power operation (instead of a more expen-
sive spatially varying kernel) and is applied after the deriva-
tive computations in the flux tensor trace are completed.

2.1. Numerical Computation of the Flux Tensor

The calculation of the second derivative operators needed to
compute the trace of the flux tensor matrix are implemented
as convolutions with appropriate kernel filters. Although gen-
eral 3D convolution kernels can be used, separable kernels
are preferred as the 3D convolutions then can be decomposed
into a cascade of 1D convolutions with a substantial reduc-
tion in computational cost fromO(n3

k) to O(nk) for annk ×
nk × nk sized filter. For numerical stability as well as noise
reduction, a smoothing filter is applied along the third dimen-
sion that is not involved in the specific second derivative fil-
ter. The calculation of the first component of the trace,Ixt,
uses derivative filters in thex- andt-dimensions and smooth-
ing along they-dimension, whereas calculation ofIyt uses
smoothing along thex-dimension. The final component of
the flux tensor matrix trace,Itt, is the second derivative along
the temporal direction and in this case the smoothing is ap-
plied along both spatial dimensions. The integral operatoris
also implemented numerically as an averaging filter decom-
posed into three 1D filters. The operation flow is illustrated
in Figure 1. The data flow objectsIDxSy

, ISxSy
andISxDy

represent the intermediate spatial convolution results required
to calculateIxt, Iyt and Itt. The operator modules shown
in Figure 1, are the spatial smoothing filtersSx andSy, the
spatial derivative filtersDx and Dy, both in thex- and y-
directions respectively, and the temporal derivative operators
Dt andDtt, representing first and second derivative filters in
t respectively. The final averaging filters are the integral part
of the flux tensor operator withAx, Ay andAt representing
averaging filters inx-, y- andt-directions respectively. The
data flow shown in Figure 1 reflects optimizations for a se-
quential implementation. Specifically, the summation block
is being done prior to the spatiotemporal averaging opera-
tors for improved computational efficiency but at the expense
of increased task dependencies and reduced parallelism (see
Eq. 4 discussion). Exchanging the order of the sum and
averaging filters will increase parallelism but would require
more memory or additional computation. For the implemen-
tation shown in Figure 1, calculating the flux tensor trace for
each video pixel requires eight 1D convolutions for the three
spatiotemporal derivatives and three 1D convolutions for lo-
cal averaging filters within the corresponding spatiotemporal
cubes. The number of temporal filtering operations is reduced
by saving intermediate results using additional memory.

The filter lengths or tap sizes associated with the three ker-
nels for computing the flux tensor trace, (nSx

, nSy
, nDx

, nDy
,

nDt
, nDtt

, nAx
, nAy

, nAt
) are the full set of filter parameters

that would need to be specified for a given application. Since
we use spatially isotropic filters, we have a reduced set of pa-
rameters to specify, withnDx

= nDy
= nDs

, nSx
= nSy

=
nSs

, nAx
= nAy

= nAs
. Typically we use the same filter

lengths for the first and second temporal derivative kernels
(= nDt

) and for the spatial smoothing and derivative kernels,
i.e., nSs

= nDs
. Thus, there remains four main parameters

of the flux tensor;(nDs
, nDt

, nAs
, nAt

) which are the 1D fil-
ter sizes of the spatial derivative filter, the temporal derivative
filter, the spatial averaging filter, and the temporal averaging
filter respectively. In medium to close view shots, the choice
of (5, 5, 5, 5) for filter sizes works well for detection. For
the very far view sequences, where the objects may be quite
small and moving very slowly, a(3, 9, 3, 3) size works best.
The large temporal filter size helps to catch the slow motion,
the small spatial filter size helps to detect small motion and
keeps the smoothing to a minimum.

2.2. Sequential Implementation of Flux Tensor Operator

The flux tensor implementation uses just the luminance com-
ponent of the RGB video (1920× 1080 pixels). In our earlier
work [9], we described a reference sequential implementa-
tion that has minimum memory requirement and used just a
single input image First In First Out (FIFO) buffer of size
(nDt

+nAt
−1) for storing the input frames but at the cost of

recomputing all spatiotemporal derivatives and integralsfor
each new video frame. This can be a significant penalty in
terms of time and power since many intermediate filtering



Fig. 1: Operator-centric data flow view of the various stages required to compute the flux tensor operator on a 3D spatiotemporal
volume showing the task dependency relationships. Note that the magnitude squaring operators are explicitly shown. The
summation stage is done prior to spatiotemporal averaging steps for computational efficiency at the cost of reduced parallelism.

results that can be reused now have to be recomputed. A
more efficient sequential implementation that minimizes re-
dundant computations using one larger FIFO buffer of size
4∗ (nDt

+nAt
−1), for the intermediate spatial and temporal

derivatives, and storing these intermediate results to be reused
across temporal stages is described in [10]. Here, we discuss
a new alternative approach that further improves memory ef-
ficiency by using dual FIFO buffers with a smaller memory
footprint of3 ∗nDt

+nAt
plus a few additional frames. Each

frame of the input sequence is first convolved with spatial
derivatives and smoothing filters. The intermediate results
are stored as frames to be used in temporal convolutions, and
pointers to these frames are stored in a FIFO buffer. The size
of the first FIFO structure is of lengthnDt

and for each in-
put frame three spatial derivative framesIDxSy

, ISxDy
and

ISxSy
are calculated and stored. Hence, the number of frames

that need to be stored in the first FIFO structure is3nDt
.

OncenDt
frames are processed and stored, the FIFO struc-

ture has enough frames for calculation of the temporal deriva-
tives. Three frames of storage are needed to hold the temporal
derivatives in memory for the current timestep.

Since averaging is distributive over addition for linear op-
erators, the sum of squaresI2

xt+I2
yt+I2

tt, which is the trace of
the flux tensor matrix is computed first, then spatial averaging
is applied to this result and stored in a second FIFO structure
of sizenAt

, to be used in the temporal part of averaging. The
numerical expression that is being computed is,

Tr JF (x) =
X

y∈N (x,y,t)

W (x− y)
(

I
2
xt(y) + I

2
yt(y) + I

2
tt(y)

)

(4)

whereN is the local neighborhood over which the square of
the second derivatives are summed. A weighted averaging
filter, such as a Gaussian, can be used at the expense of ad-
ditional computing cost. Typically box filters are used for
a power efficient implementation. This temporal averaging
FIFO keepsnAt

frames at a time and produces the flux ten-
sor trace after it is full. Once both FIFO’s are full, processing
a new input frame causes a shift of pointers in both FIFO’s,
reusing intermediate results from previous calculations and
reducing the total computation per flux tensor output frame.

3. PARALLEL IMPLEMENTATION OF THE FLUX
TENSOR OPERATOR ON THE CELL/B.E.

A power efficient multicore implementation needs to take full
advantage of the intrinsic Cell/B.E. architecture specifichard-
ware accelerations in order to use the best choice of data and
task partitioning across SPEs, managing memory transfers,
taking full advantage of vectorization and using local buffers.
The 3.2 GHz SPEs deliver their peak performance while exe-
cuting a fused short vector multiply add instruction (FMA) on
each clock cycle that operates on a four floating-point element
vector to complete eight floating point operations in SIMD
fashion. Thus a peak peformance of 25.6 single-precision
GFLOP/s per SPE can be obtained. An important point to
note is that the SPEs work only on data that is in its local
memory (local store). However, the SPE local storage is a
limited resource as only 256 Kbytes is available for program,
stack, local buffers and data structures. Making sure the SPEs
efficiently receive and operate on current data without exces-
sive buffering is critical to achieving high performance onthe
Cell/B.E. architecture. Rather than considering cache control
and the impact of memory bandwidth, we focus on structur-
ing data movement within the Cell/B.E. processor to keep the
SPEs busy, and dividing the application into vectorized func-
tions to make efficient use of the SPE hardware.

We implemented and tested our code on the SONY PS-
3 which is a very energy efficient multicore processor but
only six of eight Cell SPE processors are available and the
main/external XDR memory on the PPE is a restrictive 256
MB of which only about 200 MB is available to the Linux
OS. To accommodate the required frame storage buffers and
data structures for the parallel implementation, the data par-
titioning and grouping of the operations needed careful con-
sideration. For main memory the parallel algorithm uses two
FIFO buffers of sizenDt

andnAt
for calculation of temporal

derivatives and temporal averaging. In the sequential imple-
mentation, all the spatial derivatives are kept in the first FIFO
buffer which requires3nDt

frames to be stored in main mem-
ory. However, there is insufficient shared (global) memory on
the Cell/B.E. to cache this many intermediate results. Addi-



Algorithm 1 Parallel Flux Tensor: PPE side

Input : Input Image sequenceI(x, y, t)

Output : Flux Trace frameTr JF (x, y, t− ⌊nDt
/2⌋ − ⌊nAt

/2⌋)

1: for each timet do
2: Push(I(x, y, t), FIFO1)

3: Initialize number of intermediate flux frames,Nm ← 0

4: if FIFO1 containsnDt
framesthen

5: Partition data into blocks.

6: Put SPE control block information including work unitW and

output location for intermediate fluxF and final outputTr JF .

7: Set up SPE threads and wait for resultsF , Tr JF .

8: Push(F , FIFO2)

9: Nm ← Nm + 1

10: if Nm > nAt
then

11: Write outputTr JF

12: end if
13: end if
14: end for

tionally, there is significant communication overhead increas-
ing the communication-to-compute ratio, since the intermedi-
ate results need to be transferred back and forth between main
memory and the SPE local store, which reduces overall effi-
ciency. Consequently, for the Cell/B.E. parallel implementa-
tion of the flux tensor, we store only the input sequence of im-
ages in the first FIFO buffer of sizenDt

(instead, of3nDt
for

storing the spatial derivatives) and recalculate the spatiotem-
poral derivatives for each successive frame at the cost of re-
dundant calculations. We estimate the amount of redundant
work to be between a factor of 2 and 5 depending on the filter
sizes shown in Table 1, compared to the sequential version.
There is no overlap in the work unit computation between ad-
jacent SPEs, as shown by the vertical lines and faces marked
in red in Figure 2 but there is an extra quad word data transfer
(16 bytes) on left and right sides to provide pixel padding in
thex-convolution direction. The second buffer FIFO2 oper-
ates the same as in the sequential case.

In order to parallelize across SPEs, the data needs to be
partitioned into equal work blocks amongst different SPEs for
optimal performance. Since there are convolutions in three
dimensions(x, y, t), the whole work unit can be visualized
as a 3D block. This is partitioned into as many overlapping
blocks as there are number of active SPEs. The data is fetched
and processed one row at a time. Due to finite size of the lo-
cal store memory, each SPE may further subdivide the work
block into smaller chunks and process a work unit width of
WU columns each time. The data partitioning scheme and
full work unit block is illustrated in Figure 2. The execu-
tion process on the PPE and SPE side is summarized in Algo-
rithms 1 and 2 respectively. Optimized convolution operators
are represented using the⊗ symbol without the explicit loop
unrolling and optimized FMA operations explicitly shown.

Fig. 2: Data partitioning scheme showing Work Unit (WU)
block width in pixels on SPEs. The 3D block represents the
spatiotemporal 3D grid of input data that needs to be pro-
cessed to produce one flux tensor output frame. The 3D grid
of data is chunked uniformly to distribute to each SPE. Since
the partition is too large to fit into the limited SPE memory,
each work block is further divided into smaller work units.
The WU sizes are dependent on the filter sizes as labeled.

4. RESULTS AND DISCUSSION

The output of the flux tensor-based video object detection al-
gorithm applied to a sample video sequence from the ARL
Force Protection Surveillance System (FPSS) video collec-
tion [26] is shown in Figure 3. The first row shows color
and long-wave infrared frames from the original video se-
quence. The second and third rows show the grayscale flux
tensor response and the thresholded binary masks respectively
using the flux tensor motion analysis with(5, 5, 5, 5) filters,
followed by grayscale closing (circular structuring element
of radius 5) and using histogram based thresholding, adap-
tively switching between global Otsu and 80% cumulative
histogram value. The colored blobs show the detected moving
objects after post processing steps including morphological
noise removal using area opening and connected component
labeling to identify contiguous regions. The pink blobs areas-
sociated with two people walking in the far background. The
FLIR channel is not affected by shadows and produces more
compact blobs of moving objects suitable for tracking.

The sequential code was tested on a Dell PowerEdge 1850
server running CentOS Linux 5.4 using a single core of a dual
CPU dual core Intel Xeon 2.8 GHz with 2 MB of cache per
core, 4GB of memory and an 800MHz front side bus com-
piled using gcc -O3 version 4.1.2. The parallel code was
tested on a PS3 Cell/B.E. with 6 SPEs using an appropri-
ate SPE work unit for HD sized (1920 × 1080, WU=320
or smaller) and Standard Definition (SD) sized (640 × 480,
WU=112 pixels) images. The PS-3 uses about 135 watts



Algorithm 2 Parallel Flux Tensor: SPEi

Input : Images in FIFO1,Nm, starting colCi, and work block widthW .

Output : Blocks of Intermediate Flux into FIFO2 and flux traceTr JF

1: for each rowr of Work Block do
2: Load from FIFO1, pixel dataIr from columnCi − ⌊nDs

/2⌋ upto

Ci + W + ⌊nDs
/2⌋ into local store

3: Push(Ir ⊗ Sx, ISx
buffer);

Push(Ir ⊗Dx, IDx
buffer);

4: if ISx
buffer andIDx

buffer havenDs
rows then

5: ISxDy
= ISx

⊗Dy;

6: ISxSy
= ISx

⊗ Sy;

IDxSy
= IDx

⊗ Sy;

7: Iyt = ISxDy
⊗Dt;

Itt = ISxSy
⊗Dtt;

Ixt = IDxSy
⊗Dt;

Fr = I2
xt + I2

yt + I2
tt ;

8: Push(Fr, FIFO2);

Pop(ISx
buffer);

Pop(IDx
buffer);

9: end if
10: end for
11: if Nm ≥ nAt

then
12: for each rowr of Work Block do
13: Load from FIFO2,Fr data from columnCi − ⌊nAs

/2⌋ upto

Ci + W + ⌊nAs
/2⌋ into local store

14: Push(Fr ⊗ Ax,IAx
buffer);

15: if IAx
buffer hasnAs

rows then
16: IAxAy

= IAx
⊗Ay ;

17: Tr JF = IAxAy
⊗At;

Pop(IAx
buffer);

18: end if
19: end for
20: end if

while the Dell PowerEdge 1850 uses about 550 watts for sys-
tem operation including CPU, peripheral devices, operating
system, multitasking, etc. Total system power was used to
measure the performance to power efficiency ratios without
doing detailed power measurements that can become com-
plex to instrument and compare. The work unit size that can
be accommodated by one SPE with 256 KB of local store de-
pends on the size of the 3D convolution filters, especially the
temporal filters, data alignment and partitioning requirements
(usually multiples of 16 bytes). Parallel performance bench-
marking done on an IBM QS20 and QS22 Blade servers with
dual Cell/B.E.s both running Fedora Linux all compiled using
gcc -O3 version 4.1.2 will be reported elsewhere.

We compared the performance between the sequential and
parallel implementations of flux tensor for different filtercon-
figurations on two different frame sizes of video streams us-
ing 3D grids. Speed-up usingp processors was calculated as,
SPS-3

p = T Seq
1

/T PS-3
p whereTp is the average time measured

acrossp processors to complete the flux tensor computation
for one frame andT Seq

1
is the time taken for the single core

Fig. 3: Output of flux tensor motion estimation and blob
extraction algorithm on selected frames of color visible and
FLIR (forward looking long-wave infrared) data from the
ARL FPSS dataset [26].

sequential implementation;p = 6 SPEs on the PS-3. The
performance to power efficiency improvement ratio was cal-
culated as,PPR= SPS-3

p
PSeq

PPS-3
wherePA is the system power

used by architectureA andSPS-3
p is the speed-up ratio.

Table 1 shows the range of spatial and temporal sizes for
both derivative and integral/averaging filters varying between
3, 5, 7 and9 that were used for performance benchmarking.
The sequential frame rate or inverse of the time to compute
one frame on the Intel Xeon processor is given in column
(T Seq

1
)−1 in frames per second, the speed-up measured on

the PS-3 Cell/B.E. platform compared to the sequential per-
formance is given in columnSPS-3

6 . For the smallest deriva-
tive and integral filters of size 3 the speed-up of the parallel
implementation compared to the sequential performance was
more than a factor of 40 even though there are only six com-
putational cores. The super-linear speed-up behavior is due
to the use of extensive vectorization, loop unrolling and FMA
operations to implement the flux tensor convolution kernels
despite the additional work done by the SPEs recomputing in-
termediate results in the parallel implementation compared to
the sequential version. As the filter sizes increase the speed-
up gain decreases since the total volume of computations in-
creases faster on the Cell (linearly with the size of the filter) as
the parallel implementation recomputes all of the intermedi-
ate spatial derivatives, whereas the sequential implementation
is able to store and reuse them at the cost of extra memory.



Table 1: Speedup and performance to power ratios of the par-
allel multicore PS-3 Cell/B.E. implementation with 6 SPEs
using 135 watts is compared to the optimized sequential im-
plementation running on an Intel Xeon core in a Dell 1850
server using 550 watts. Sequential performance in frames
per second are shown in the(T Seq

1
)–1 columns. Parallel PS-

3 speed-up (SPS-3
6

) is compared to the sequential implemen-
tation running on an Intel Xeon CPU. The power efficiency
improvement of the parallel implementation compared to the
sequential implementation are shown in thePPRcolumns.

Filter Configuration HD video SD video
nDs nDt nAs nAt (T Seq

1 )–1
S

PS-3
6 PPR(T Seq

1 )–1
S

PS-3
6 PPR

3 3 3 3 1.75 40.1 164 17.32 18.2 74
5 3 5 3 1.68 38.6 157 14.35 20.0 82
7 3 7 3 1.54 38.1 155 13.02 19.3 79
9 3 9 3 1.37 39.6 161 11.52 19.6 80

3 5 3 5 1.53 30.8 125 13.99 14.7 60
5 5 5 5 1.42 29.6 120 12.28 14.9 61
7 5 7 5 1.34 28.7 117 10.99 15.2 62
9 5 9 5 1.23 28.3 115 10.05 14.8 60

3 7 3 7 1.34 25.6 104 12.01 13.5 55
5 7 5 7 1.25 24.7 101 10.44 13.2 54
7 7 7 7 1.18 23.6 96 9.88 11.9 48
9 7 9 7 1.11 14.2 58 9.03 12.0 49

3 9 3 9 1.24 22.0 89 10.45 12.0 49
5 9 5 9 1.14 21.3 87 9.34 11.3 46
7 9 7 9 1.09 12.4 51 8.63 11.1 45
9 9 9 9 1.02 13.0 53 7.97 10.7 43

For larger filter sizes the limited local store on the SPEs re-
quires smaller data chunks (work unit width in Figure 2) that
then requires more than six threads of execution and resultsin
two stages of computation which reduces speed-up; the filter
configurations needing two stages of execution are shown in
bold font in Table 1. This can be partly mitigated by using the
more expensive IBM Cell/B.E. Blade processors which have
a lot more main memory but also higher power consumption.

The speed-up of the multicore flux tensor implementation
ranged from a factor of 11 to 20 for the smaller SD video
frame sizes to between 12 and 40 for the larger HD frame size
video streams as shown in Table 1. The results for 16 different
filter configurations for both HD and SD video frame sizes are
compared and show substantial improvement in terms of both
parallel speed-up as well as performance to power efficiency.
Our implementation on the PS-3 Cell/B.E. was able to deliver
34.9 fr/s×1.32 GFLOPs/frame= 46 GFLOP/s which is30%
of single-precision peak performance (153.6 GFLOP/s) but
significantly better than the expected memory-intensive peak
of 12.8 GFLOP/s. The identical code reaches39%, 35% and
24% of peak performance on the QS20 (410 GFLOP/s for 16
SPEs) with 6, 8 and 16 SPEs respectively for the same filter
size configuration ofnDs

= 9, nDt
= 5, nAs

= 9, nAt
= 5.

An earlier implementation that used better data alignments
but could only handle a limited number of filter sizes and im-

age widths was able to reach68 fr/s and58% of peak on the
QS20. We found that explicit memory management and some
assembly coding on the Cell is required to reach high perfor-
mance even though this hand tuning incurs additional pro-
gramming effort. Multicore GPU architectures are also well
suited for computer vision algorithms [27]. In future work we
will compare the energy efficiency of the flux tensor on GPUs
using CUDA or OpenCL.

5. CONCLUSIONS

The flux tensor operator estimates significant orientationsin
multidimensional gridded datasets and is an efficient tech-
nique for moving object detection in video datasets. The
parallel algorithm implemented for the Cell/B.E. PS-3 archi-
tecture with six SPE computational cores achieved a speed-up
improvement factor of 40 compared to the sequential algo-
rithm using the smallest filter sizes which offers substantial
energy efficiency optimization choices. The super-linear
speed-up behavior is due to the extensive use of vector-
ized floating point operations, FMA instructions and double
buffering to overlap computation and communication. Using
larger filter sizes the speed-up gain decreased to a factor of
12 since the total volume of computations increases faster on
the Cell as the parallel implementation must recompute the
intermediate spatial derivatives in comparison to the sequen-
tial implementation which uses significantly more memory.
For larger filter sizes the limited local store on the SPEs also
leads to smaller data partitioning sizes that requires more
than six threads of execution which results in two stages of
computation thus reducing speed-up. For all filter sizes tested
the parallel flux tensor algorithm was able to exceed realtime
performance requirements using a single PS-3 Cell/B.E. pro-
cessor for SD sized video streams and for most of the filter
sizes for HD sized video streams. The lower power require-
ments for the multicore PS-3 Cell/B.E. compared to an Intel
Xeon processor makes the energy efficiency performance to
power ratio of the flux tensor more than 160 times better for
the smaller filter sizes and more than 50 times better for the
larger filter sizes for HD video streams. The dependency of
the energy efficiency factor on the flux tensor filter size pro-
vides an additional dimension for energy optimization based
on output image quality, that is using slightly smaller filter
sizes for a marginal reduction in performance.
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