MULTICORE ENERGY EFFICIENT FLUX TENSOR FOR VIDEO ANALYSIS
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ABSTRACT processing. Energy efficiency has become a leading design

: _ . . constraint for both hardware and software. Algorithmic ap-
The flux tensor motion flow algorithm is a versatile computer

ision techni f bustly detecti : biectslirt proaches to improve energy efficiencies is complementary to
visiontechnique forrobustly detecting moving 0DJECISULC 5 4y are and systems-based approaches. Switching between
tered scenes. The flux tensor calculation has a high comp

tational workload consisting of 3-D spatiotemporal filteyi dctive and sleep (or multiple low-power) modes in the idle

. . . . : . state using a randomized algorithm for state transitiogs, d
operations combined with 3-D weighted integration opera- 9 g ¥

i f timating local f the flux t i namic speed-scaling using a job scheduler with fixed or flex-
lons for estimating local averages ot Ine Tlux tensor matrby, . completion deadlines, and adaptive network topotgie
trace. In order to achieve efficient real-time processing o

. . . ; re several approaches that are being actively investigate
high bandwidth video streams a data parallel multicore alz bp g y 9

. . for energy-efficient algorithms [1]. Multicore parallelgpr
gorithm was developed for the Cell Broadband Engine (BEkessing environments are widely available today for which

processor and evaluated in terms of the energy tp COmlom%hergy efficient algorithms are equally important and have
tion efficiency compared to a fast sequential CPU implemen-

tation. Our multicore implementation is 12 to 40 times fastegreater flexibility in that the number of processors used can
: ! ) ) ) . e dynamically changed based on a completion time versus
than the sequential version for HD video using a single PS-

) i nergy tradeoff. Scheduling algorithms to minimize total
C_:ell/ B.E. processor and IS faster than _realume for a rarige 0energy across identical parallel processors has been sloown
filter configurations and video frame sizes. We report on the . \\5"1ard even for unit-sized jobs [2]
power efficiency measured in terms of performance per watt _ ) )
for the Cell/B.E. implementation which is 50 to 160 times !N this paper we characterize the workload of the flux ten-
better than the sequential version for HD video depending of©" @lgorithm for moving object detection in high bandwidth
the filter size. The results suggest an additional strategy tVid€0 streams. The parallel flux tensor algorithm exhibits
trade off output image quality or nominal change in accuracyUPer-linear speed-up due to the vectorization, loop ting!
of detection for improved energy efficiency in suitable envi FMA operations and double-buffering optimizations for the
ronments. Cell/B.E. architecture which along with the power efficignc

of the Cell/B.E. processor provides a tremendous improve-
Index Terms— Parallel image processing, multicore ment in the performance per watt metric compared to an op-
Sony Toshiba IBM Cell/B.E. processor, realtime video/i@ag timjzed sequential implementation. The variation in perfo
processing, 3D convolution, percent peak performance mance efficiency for different flux tensor filter sizes furthe
suggests another avenue for energy efficient algorithngdesi
1. INTRODUCTION — namelyoutput image quality That is trading off th_e accu-
racy of the flux tensor operator under certain environmental

Realtime persistent moving object detection and trackimg f conditions using a slightly smaller filter to reduce energg u
surveillance applications is a computationally challeggi Put with marginal impact on moving object detection.
problem. Current trends in distributed sensor networks and Power efficient real-time flux tensor processing is re-
agile systems favors the processing of large volumes of raguired in a variety of operational scenarios including eide
data closer to the sensor to reduce bandwidth requirementsased net-centric exploitation and tracking on airborrae-pl
extract high priority scene information more rapidly and ex forms and ground-based multi-sensor imaging for force pro-
change integrated information for cooperative downstreartection. Synergistic collaborative computation expiuiti



net-centricity can enable distributed interacting compand Cell processor is optimized for single-precision arithimet
sensor nodes to accomplish mission goals more effectimely i(double-precision peak is less than 11 GFLOP/s) with trunca
terms of survivability, ease of fielding, and reconfiguriapil tion rounding. Each SPE can perform 25.6 GFLOP/s single-
using a modular joint information management system [3]precision floating point operations at 3.2GHz. Although
Such agile sensor networks need to be further enhanced toe six SPEs can deliver 153.6 GFLOP/s peak performance,
minimize overall power consumption under the constraint ofnemory-intensive single-precision calculations max aut a
still yielding the best exploitable informationin atimehan-  12.8 GFLOP/s (and double-precision at 6.4 GFLOP/s) due to
ner. Embedded video processing requires efficient algogth memory bandwidth limits [12]. The Cell/B.E. uses the single
in terms of power-aware computing as well as parallelizatio program multiple data (SPMD) parallel processing model
to enable real time performance in analyzing complex videowhich is more powerful than the single instruction multiple
There are a number of Cha”enging Computer vision probdata (SlMD) model for heterogeneous multithreaded data
lems that need to be solved for stabilizing, detecting,aetér  flow execution mapped onto SPEs.
ing' Verifying and tracking moving Objects in airborne wide The Cell/B.E. offered one of the first commercial imple-
[4-8]. In this paper we focus on one part of the video procesghentations of a power efficient high performance single chip
ing pipeline, namely power-efficient realtime moving ohjec Multiprocessor with a significant number of general-puepos
detection that is robust to natural environmental conditio Programmable cores targeting a broad set of workloads [13].
such as illumination variation, shadows, clutter, andewois A good description of scientific computing and programming
order to reliably detect moving blobs in unconstrained gide ©n the Cellis provided in [14] and other details of implement
we use the recently propostdx tensol(J ) operator [9,10], ing scientific computing kernels and programming memory
which captures the temporal variations of the optical flowhierarchies can be found in [15,16]. In [17], the authors
field within the local 3D spatiotemporal volume. The flux discuss interesting code transformation techniques for-mo
tensor detects only the moving structures, and is lesstsensi ing scientific simulation codes to the Cell/B.E. and [18] de-
to illumination, focus and related pr0b|em5 Compared teth scribes the fastest Fourier transform for the Cell proaesso
moving object detection algorithms including classicatiba (18.6 GFLOP/s). Many programming frameworks/platforms
ground subtraction, mixture of Gaussians and 3D structuréke RapidMind [19], MFC (Multicore Framework) by Mer-
tensor orientation estimation. The flux tensor motion deteccury [20] have also emerged to support efficient program-
tion results have in general better spatial coherency argabl ming for multicore processors. In order to reduce complexi-
more accurate motion-based object segmentation. The fljes of task management, multithreading and synchrowizati
tensor is more efficient in comparison to the 3D grayscaléor programming the Cell/B.E. some tools for mapping serial
structure tensor since motion information is more direirtly ~ code in a semi-automatic fashion are in development [21, 22]
corporated in the flux calculation which is less expensiemth We first give a brief overview of the flux tensor method and
eigenvalue decompositions at each pixel in the image. discuss the sequential implementation along with the com-
This paper describes a parallel implementation of thGputation and memory characteristics. Then we discuss the

flux tensor optimized for the multicore Cell/B.E. processorpara"el. archltecturg ISSues involved in our QeII/B.E. leap
for real-time processing of high-bandwidth video streams i mentation. A description of the data partitioning schemg an

power constrained environments. Some early supercompLRf”‘ra"eliz"’ltion procedure_zs to map the flux t_ensor algorithm
ing architectures like the SIMD MasPar were ideally suited®"t© the Cell/B.E. cores is followed by experimental result

for image analysis tasks like deformable motion estima-

tion [11]. The PS-3 Cell/B.E. processor provides a modern 5 gL Ux TENSOR-BASED MOTION DETECTION

power efficient single chip high performance computational

platform, with seven heterogenous cores - one Power Prd-he 3D flux tensor was shown to be a robust and computation-
cessing Element (PPE) and six (of eight) active Synergistially efficient method for coherent detection of moving regio
Processing Elements (SPEs). The PPE is a 64-bit proceivideo [9,10,23]. The flux tensor is a more efficient opera-
sor that is binary-compliant with the PowerPC 970 but with ator in comparison to the 3D grayscale structure tensor [244, 2
simpler architecture supporting dual issue, in-orderetien.  since motion information is more directly incorporatedhie t
Each SPE consists of a 3.2 GHz Synergistic Processing Unfilux calculation without the necessity for computing eigen-
(SPU), a large 128-entry 128-bit vector register file, a $malvalue decompositions as with the 3D grayscale structure ten
256 Kbytes of private local store memory, short pipelinessor. We summarize the mathematical description of the struc
and a memory-flow controller (MFC) to access the 256 MBture tensor and flux tensor multidimensional orientatidi es
of shared main memory using non-blocking DMA commandgnation methods in order to provide a background on the types
at 25.6 Gbytes/s. The SPUs are in-order dual-issue sigticalof operators needed to compute the flux tensor quantity for ro
scheduled short-vector number crunchers with support fopust motion estimation.

SIMD instructions operating on packed multiple data value In order to reliably detect moving structuregthoutper-
without dynamic branch prediction. The PS-3 version of thdorming expensive eigenvalue decompositionsfiilnetensor



has been shown to be a more robust operator in comparisontepresent the intermediate spatial convolution resudtsired
the more widely used structure or orientation tensor [1], 23to calculatel,;, I, and I;;. The operator modules shown
The flux tensor is composed of the temporal variations in thén Figure 1, are the spatial smoothing filte¥s and .S, the
optical flow field within the local 3D spatiotemporal volume. spatial derivative filtersD, and D,, both in thez- andy-
Computing temporal derivative of the optical flow equationdirections respectively, and the temporal derivative afges
and setting the image brightness acceleration to zero,gives D, andD,;, representing first and second derivative filters in
t respectively. The final averaging filters are the integral pa
9 (dI(X)> =T v+ 1,0, + Iy (1)  of the flux tensor operator wit., A, andA, representing
ot dt oy AT averaging filters inc-, y- and¢-directions respectively. The
data flow shown in Figure 1 reflects optimizations for a se-
quential implementation. Specifically, the summation kloc
is being done prior to the spatiotemporal averaging opera-
tors for improved computational efficiency but at the exgens
921 (x) 9?1 (x) 9?1 (x) of increased task dependencies and reduced paralleligm (se
Iop = > Iyt = £ In= 45 () Eq. 4 discussion). Exchanging the order of the sum and
averaging filters will increase parallelism but would requi
The I,; and I, terms capture information about moving more memory or additional computation. For the implemen-
edges or gradients in the video whilg, incorporates in- tation shown in Figure 1, calculating the flux tensor traae fo
formation on moving textures and temporal illuminationeach video pixel requires eight 1D convolutions for the ¢hre
changes. A total least squares solution to Eq. 1 leads to thepatiotemporal derivatives and three 1D convolutionsder |
structure tensor matrixdr (x, W (x,y)), with an integration cal averaging filters within the corresponding spatioterapo
kernelW (x,y). We use the trace of the flux tensor matrix, cubes. The number of temporal filtering operations is reduce
referred to ag'r_Jr, that is defined below, by saving intermediate results using additional memory.
The filter lengths or tap sizes associated with the three ker-
TrJp = / W(x —y)(I2,(y) + I%(y) + I2(y))dy (3) nelsforcomputing the flux tensor traces(, ns,,np,,np,,

Q np,,MD>MA,,N4A,,N4,) are the full set of filter parameters
as the computational operator to reliably detect moving rethat would need to be specified for a given application. Since
gions in video streams. A spatially invariant integratienk We use spatially isotropic filters, we have a reduced set-of pa
nel W (x — y), also referred to as the local averaging operal@meters to specify, withp, = np, = np,,ns, = ns, =
tor, is used for low power operation (instead of a more expen?s.» 4. = na, = na,. Typically we use the same filter
sive spatially varying kernel) and is applied after the eri lengths for the first and second temporal derivative kernels

tive computations in the flux tensor trace are completed. (= 7p.) and for the spatial smoothing and derivative kernels,
i.e, ng, = np,. Thus, there remains four main parameters

2.1. Numerical Computation of the Flux Tensor of the flux tensor(np_,np,,na.,na,) Which are the 1D fil-

er sizes of the spatial derivative filter, the temporal\iive

The calculation of the second derivative operators neealed ¢ . o :
. . Iter, the spatial averaging filter, and the temporal aviergg
compute the trace of the flux tensor matrix are |mplemente‘g| . ; . .
as convolutions with appropriate kernel filters. Althouging iiter respectively. In medium to close view shots, the choic
) 5,5,5,5) for filter sizes works well for detection. For

eral 3D convolution kernels can be used, separable kemeﬁie(ver far view sequences. where the obiects mav be quite
are preferred as the 3D convolutions then can be decompos y . q ' ) ybeq
small and moving very slowly, 8,9, 3, 3) size works best.

into a cascade of 1D convolutions with a substantial reduc: . : ;
CThe large temporal filter size helps to catch the slow motion,

tion in computational cost fror®(n3) to O for an A . .
nputa .(nk) ..(nk) "E X the small spatial filter size helps to detect small motion and
ny X ny sized filter. For numerical stability as well as noise . o
keeps the smoothing to a minimum.

reduction, a smoothing filter is applied along the third dime
sion that is not involved in the specific second derivative fil
ter. The calculation of the first component of the trakg,
uses derivative filters in the- and¢-dimensions and smooth- The flux tensor implementation uses just the luminance com-
ing along they-dimension, whereas calculation 6f; uses ponent of the RGB videol020 x 1080 pixels). In our earlier
smoothing along the:-dimension. The final component of work [9], we described a reference sequential implementa-
the flux tensor matrix tracdy,, is the second derivative along tion that has minimum memory requirement and used just a
the temporal direction and in this case the smoothing is apsingle input image First In First Out (FIFO) buffer of size
plied along both spatial dimensions. The integral openator (np, +n4, — 1) for storing the input frames but at the cost of
also implemented numerically as an averaging filter decomrecomputing all spatiotemporal derivatives and integfais
posed into three 1D filters. The operation flow is illustratedeach new video frame. This can be a significant penalty in
in Figure 1. The data flow objecty, s,, Is,s, andIs,p, terms of time and power since many intermediate filtering

where I(x) is the spatiotemporal image volumejs time,
v(x) = [vg, vy, v¢] is the optic-flow vector ak, and the sec-
ond derivative terms are defined as,

2.2. Sequential Implementation of Flux Tensor Operator
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Fig. 1. Operator-centric data flow view of the various stages megltio compute the flux tensor operator on a 3D spatiotemporal
volume showing the task dependency relationships. Notethligamagnitude squaring operators are explicitly showne Th
summation stage is done prior to spatiotemporal averagipg $or computational efficiency at the cost of reduced|fegisamn.

results that can be reused now have to be recomputed. A3. PARALLEL IMPLEMENTATION OF THE FLUX

more efficient sequential implementation that minimizes re TENSOR OPERATOR ON THE CELL/B.E.

dundant computations using one larger FIFO buffer of size - _ . .

4% (np, +na, — 1), for the intermediate spatial and temporaIA power efficient mul_ncc_)re |mplementat_|0n needs to '_ta_lkds ful
derivatives, and storing these intermediate results te bgsad advantage of the intrinsic Cell/B.E. architecture spetiéicd-

across temporal stages is described in [10]. Here, we disculvare accelerations in order to use the best choice of data and

a new alternative approach that further improves memory ef2SK partitioning across SPEs, managing memory transfers,

ficiency by using dual FIFO buffers with a smaller memorytar:<ing full advantagz OIT vectrc])ri_zatiorllandfusing local E'fﬁ
footprintof 3« np, +na, plus a few additional frames. Each The 3.2 GHz SPEs deliver their peak performance while exe-

frame of the input sequence is first convolved with spatiaf:u'[ing a fused short vector multiply add instruction (FMAJ o

derivatives and smoothing filters. The intermediate resulteaCh clock cyclethat(.)perates.onafqurfloatmg-pomtet&me
gctor to complete eight floating point operations in SIMD

are stored as frames to be used in temporal convolutions, aj hi h K pef f 25 6 sinal .
pointers to these frames are stored in a FIFO buffer. The siZ&>MO"N- Thus a peak peformance of 25.6 single-precision

GFLOP/s per SPE can be obtained. An important point to
put frame three spatial derivative framés_ s , Is. p. and note is that the SPEs work only on data that is in its local
Ig_ s, are calculated and stored. Hence, thze ?l’umxbeyr of framdg€mory (local store). However, the SPE local storage is a
th;t yneed to be stored in the first FIFO structuriis, Imited resource as only 256 Kbytes is available for program
Oncenp, frames are processed and stored, the FIFOt Struc%_tac:k, local buffers and data structures. Making sure tHesSP

ture has enough frames for calculation of the temporal deriv €fficiently receive and operate on current data without exce

tives. Three frames of storage are needed to hold the teﬂnporsoive buffering is critical to achieving high performancetba
derivatives in memory for the current timestep.

Cell/B.E. architecture. Rather than considering cachérobn
Since averaging is distributive over addition for linear op

and the impact of memory bandwidth, we focus on structur-
erators, the sum of SquarE%JrIygtJrIi’ which is the trace of ing data movement within the Cell/B.E. processor to keep the
the flux tensor matrix is computed first, then spatial averggi

SPEs busy, and dividing the application into vectorizedfun
is applied to this result and stored in a second FIFO stractuions to make efficient use of the SPE hardware.

of sizen 4,, to be used in the temporal part of averaging. The ~We implemented and tested our code on the SONY PS-

numerical expression that is being computed is, 3 which is a very energy efficient multicore processor but
only six of eight Cell SPE processors are available and the

Tr-Jr(x) = Z Wx=y) (L) + 15:(y) + 1:(¥)) 4 main/external XDR memory on the PPE is a restrictive 256
YEN (@.y,t) MB of which only about 200 MB is available to the Linux

where\ is the local neighborhood over which the square ofOS. To accommodate the required frame storage buffers and
the second derivatives are summed. A weighted averagirdpta structures for the parallel implementation, the data p
filter, such as a Gaussian, can be used at the expense of didioning and grouping of the operations needed careful con
ditional computing cost. Typically box filters are used for sideration. For main memory the parallel algorithm uses two
a power efficient implementation. This temporal averaging=-IFO buffers of size:p, andn 4, for calculation of temporal
FIFO keepsu4, frames at a time and produces the flux ten-derivatives and temporal averaging. In the sequentialémpl
sor trace after it is full. Once both FIFO's are full, prodags mentation, all the spatial derivatives are kept in the fitB(J-
a new input frame causes a shift of pointers in both FIFO’sbuffer which require8n p, frames to be stored in main mem-
reusing intermediate results from previous calculatiomd a ory. However, there is insufficient shared (global) memary o
reducing the total computation per flux tensor output frame. the Cell/B.E. to cache this many intermediate results. Addi

of the first FIFO structure is of lengthp, and for each in-



Algorithm 1 Parallel Flux Tensor: PPE side T

Input : Input Image sequencHz, y, t)
Output : Flux Trace fram&l'r_Jp(z,y,t — |np,/2] — |na,/2]) X
_ [> SPE, || +++ | SPE,
1: for each timet do Y
2:  Push{(z,y,t), FIFO1)
3 Initialize number of intermediate flux frame¥,,, — 0
4 if FIFOL contains:p, framesthen Original 3D Block Partitioned Work Blocks
5: Partition data into blocks. |
6 Put SPE control block information including work umit and ‘ ] ;\nm
output location for intermediate fluk and final outputl'r_J . —1
7: Set up SPE threads and wait for restltsTr_J . ﬁ I Noy
8: Push¢’, FIFO2) — -
Nox <€ Nox
9: Nm — Np +1 w
10: if Nm >mnga, then 2 2
11: Write outputl'r_J One Work Unit
12: end if
13:  endif Fig. 2. Data partitioning scheme showing Work Unit (WU)
14: end for block width in pixels on SPEs. The 3D block represents the

spatiotemporal 3D grid of input data that needs to be pro-
cessed to produce one flux tensor output frame. The 3D grid
of data is chunked uniformly to distribute to each SPE. Since
the partition is too large to fit into the limited SPE memory,
tionally, there is significant communication overheadé@as- each work block is further divided into smaller work units.
ing the communication-to-compute ratio, since the intetime The WU sizes are dependent on the filter sizes as labeled.
ate results need to be transferred back and forth between mai
memory and the SPE local store, which reduces overall effi- 4. RESULTS AND DISCUSSION
ciency. Consequently, for the Cell/B.E. parallel impleitaen

ion OT the ﬂu_x tensor, we store qnly th‘? input sequence of im~,, output of the flux tensor-based video object detection al
agesin the first _FIFO puﬁgr of sizep, (instead, oBnp, fo_r gorithm applied to a sample video sequence from the ARL
storing the spatial derivatives) and recalculate the sfEti- 4 cq protection Surveillance System (FPSS) video collec-
poral derivatives for each successive frame at the cost-of rfion [26] is shown in Figure 3. The first row shows color
dundant calculations. We estimate the amount of redundagt, 4 long-wave infrared frame's from the original video se-
W_O”‘ to be beMeen afactor of 2 and 5 depending on the ﬁl_te&uence. The second and third rows show the grayscale flux
SIzes §hown n Tabl_e 1 compare.d to the seguenhal VerSIOfhnsor response and the thresholded binary masks resggctiv
There is no overlap in the work unit computation between adUsing the flux tensor motion analysis with, 5, 5, 5) filters,
J.acent.SP!Es, as shown by.the vertical lines and faces mark?gllowed by grayscale closing (circular structuring elerne
in red in Figure 2 but there is an extra quad word data transfel; 5 4i,s 5) and using histogram based thresholding, adap-
(16 bytes) on _Ieft a_nd ”_ght sides to provide pixel padding Mively switching between global Otsu and 80% cumulative
the z-convolution Filrectlon. The.second buffer FIFO2 OP€I*histogram value. The colored blobs show the detected moving
ates the same as in the sequential case. objects after post processing steps including morphoégic

. noise removal using area opening and connected component

In order to parallelize across SPEs, the data needs to hgneling to identify contiguous regions. The pink blobsase

partitioned into equal work blocks amongst different SRES f sociated with two people walking in the far background. The
optlmal_performance. Since there are convolutlo_ns in threg| |R channel is not affected by shadows and produces more
dimensions(z, y, t) ' the Wh(?'? WO”f unit can be wsuahzed compact blobs of moving objects suitable for tracking.
as a 3D block. This is partmoneq Into as many overllappmg The sequential code was tested on a Dell PowerEdge 1850
blocks as there are number of_actlve SPEs._T_he d_ata is fetchegy ey running CentOS Linux 5.4 using a single core of a dual
and processed one row at a time. Due to finite size of the IOCPU dual core Intel Xeon 2.8 GHz with 2 MB of cache per

cal store memory, each SPE may further subdivide the WorEore 4GB of memory and an 800MHz front side bus com-
block into smaller chunks and process a work unit width of '

, - iled using gcc -O3 version 4.1.2. The parallel code was
WU columns each time. The data partitioning scheme anﬁested on a PS3 Cell/B.E. with 6 SPEs using an appropri-

full work unit block is illustrated in Figure 2. The execu- o spE work unit for HD sized1920 x 1080, WU=320
tion process on the PPE and SPE side is summarized in Algc?)—r smaller) and Standard Definition (SD) sized({ x 480,

rithms 1 and 2 respectively. Optimized convolution operato WU=112 pixels) images. The PS-3 uses about 135 watts
are represented using tliesymbol without the explicit loop

unrolling and optimized FMA operations explicitly shown.



Algorithm 2 Parallel Flux Tensor: SPE

Input : Images in FIFO1)N,,, starting colC;, and work block widthiV’.
Output : Blocks of Intermediate Flux into FIFO2 and flux traée_J g

1: for each rowr of Work Block do

2: Load from FIFO1, pixel datd, from columnC; — |np, /2] upto
Ci; + W + |np, /2] into local store

3: Push(, ® Sz, Is,_buf fer);
Push(; ® Dy, Ip,_buf fer);

4: if Is, bufferandlp, buffer havenp, rowsthen
5 -[SIDy = Is, ® Dy;
6: Is,s, =I5, ®Sy;
Ip,s, = Ip, ® Sy;
7: Iyt = Is,p, ® D¢;

Iy = ISISy ® Dyy;
Izt = Ip,s, ® Dt;
FT:I£t+I§t+It2t;
8: Push§., FIFO2);
Pop('s, _buffer);
Pop(p, _buf fer);
9: end if
10: end for
11: if N > ny, then
12: for each rowr of Work Block do

13: Load from FIFO2,F,. data from columnC; — [n4_ /2| upto  Fig. 3: Output of flux tensor motion estimation and blob

Ci + W + |na, /2] into local store extraction algorithm on selected frames of color visibld an
14: Pushf ® Ag,la,_buffer); FLIR (forward looking long-wave infrared) data from the
15: if T4, _buffer hasn4_ rowsthen ARL FPSS dataset [26].
16: IAIAy:IAI®Ay§
17: Tr_Jgr =IAsz ® At;

Pop(a, _buf fer); sequential implementation; = 6 SPEs on the PS-3. The

18: end if performance to power efficiency improvement ratio was cal-
19: end for culated asPPR = SPS3L5% where P, is the system power
20: end if P Frss

used by architecturd and;S}S3is the speed-up ratio.

Table 1 shows the range of spatial and temporal sizes for
both derivative and integral/averaging filters varyingnzsgn
while the Dell PowerEdge 1850 uses about 550 watts for sys; 5 7 and9 that were used for performance benchmarking.
tem operation including CPU, peripheral devices, opegatin The sequential frame rate or inverse of the time to compute
system, multitasking, etc. Total system power was used tgne frame on the Intel Xeon processor is given in column
measure the performance to power efficiency ratios Withou(tTISeq)—l in frames per second, the speed-up measured on

doing detailed power measurements that can become coffre PS-3 Cell/B.E. platform compared to the sequential per-
plex to instrument and compare. The work unit size that caformance is given in colums®S3. For the smallest deriva-

be accommodated by one SPE with 256 KB of local store desive and integral filters of size 3 the speed-up of the pdralle
pends on the size of the 3D convolution filters, especiaky thimplementation compared to the sequential performance was
temporal filters, data alignment and partitioning requieets  more than a factor of 40 even though there are only six com-
(usually multiples of 16 bytes). Parallel performance enc putational cores. The super-linear speed-up behaviorés du
marking done on an IBM QS20 and QS22 Blade servers witlg the use of extensive vectorization, loop unrolling and&M
dual Cell/B.E.s both running Fedora Linux all compiled @sin gperations to implement the flux tensor convolution kernels
gce -O3 version 4.1.2 will be reported elsewhere. despite the additional work done by the SPEs recomputing in-
We compared the performance between the sequential atekmediate results in the parallel implementation compswe
parallel implementations of flux tensor for different filman-  the sequential version. As the filter sizes increase thedspee
figurations on two different frame sizes of video streams ustp gain decreases since the total volume of computations in-
ing 3D grids. Speed-up usingprocessors was calculated as, creases faster on the Cell (linearly with the size of therjiie
SpSS = Tlseq/Tzf’S'3 whereT), is the average time measured the parallel implementation recomputes all of the interimed
acrossp processors to complete the flux tensor computatiorite spatial derivatives, whereas the sequential impleatient
for one frame anc‘TlSeq is the time taken for the single core is able to store and reuse them at the cost of extra memory.



Table 1: Speedup and performance to power ratios of the parage widths was able to rea6h fr/s and58% of peak on the
allel multicore PS-3 Cell/B.E. implementation with 6 SPESQSZO_ We found that explicit memory management and some
using 135 watts is compared to the optimized sequential imassembly coding on the Cell is required to reach high perfor-
plementation running on an Intel Xeon core in a Dell 1850mance even though this hand tuning incurs additional pro-
server using 550 watts. Se%uential performance in framegramming effort. Multicore GPU architectures are also well
per second are shown in tti&;*Y" columns. Parallel PS- suited for computer vision algorithms [27]. In future workw

3 speed-up 59 is compared to the sequential implemen-wjill compare the energy efficiency of the flux tensor on GPUs
tation running on an Intel Xeon CPU. The power efficiencyusing CUDA or OpenCL.

improvement of the parallel implementation compared to the

sequential implementation are shown in BFféRcolumns. 5. CONCLUSIONS

Filter Configuration HD video SDvideo | The flux tensor operator estimates significant orientations
no, [ np, na,na, (17597 SE¥°PPR(17°) Y] S6°|PPR multidimensional gridded datasets and is an efficient tech-
3] 3] 3| 3| 175401164 17.32] 18.2] 74 nigue for moving object detection in video datasets. The
5|3|5| 3] 168 386|157| 14.35)| 20.0| 82 parallel algorithm implemented for the Cell/B.E. PS-3 &rch
73| 7| 3] 154 381|155 13.02|19.3|79 tecture with six SPE computational cores achieved a spped-u
9 |39 |3 ] 137 396|161 11.52| 19.6| 80 improvement factor of 40 compared to the sequential algo-
3| 5] 3| 5| 153 308|125 13.99| 14.7| 60 rithm using the smallest filter sizes which offers substdnti
55| 5| 5| 142 |29.6/120] 12.28 | 14.9| 61 energy efficiency optimization choices. The super-linear
71575 1341287117 10.99)| 15.2) 62 speed-up behavior is due to the extensive use of vector-
9 | 5]9]5] 123]283]115 10.05| 14.8| 60 ized floating point operations, FMA instructions and double
3|1 7] 3| 7| 134 256|104/ 12.01|13.5| 55 buffering to overlap computation and communication. Using
S| 7|5 | 7| 125]247)|101] 1044 13.2| 54 larger filter sizes the speed-up gain decreased to a factor of
7|7 | 7|7 )118]236| 96| 988 | 119 48 12 since the total volume of computations increases faster o
9 | 7] 9|7 | 111 |142]58] 9.03 | 12.0] 49 the Cell as the parallel implementation must recompute the
319 ]3| 9| 124]220] 89| 1045|12.0| 49 intermediate spatial derivatives in comparison to the sagu
51959114213 87| 934 |11.3| 46 tial implementation which uses significantly more memory.
7191 719|109 ]|124|51] 863 |111)45 For larger filter sizes the limited local store on the SPEs als
9 [ 9]9]9 | 102 130] 53] 7.97 | 10.7]| 43 leads to smaller data partitioning sizes that requires more

than six threads of execution which results in two stages of

For larger filter sizes the limited local store on the SPEs recomputation thus reducing speed-up. For all filter sizeetes
quires smaller data chunks (work unit width in Figure 2) thatthe parallel flux tensor algorithm was able to exceed realtim
then requires more than six threads of execution and rasults performance requirements using a single PS-3 Cell/B.E. pro
two stages of computation which reduces speed-up; the filtfessor for SD sized video streams and for most of the filter
configurations needing two stages of execution are shown igizes for HD sized video streams. The lower power require-
bold fontin Table 1. This can be partly mitigated by using thements for the multicore PS-3 Cell/B.E. compared to an Intel
more expensive IBM Cell/B.E. Blade processors which havékeon processor makes the energy efficiency performance to
a lot more main memory but also higher power consumptiongower ratio of the flux tensor more than 160 times better for

The speed-up of the multicore flux tensor implementationhe smaller filter sizes and more than 50 times better for the
ranged from a factor of 11 to 20 for the smaller SD videolarger filter sizes for HD video streams. The dependency of
frame sizes to between 12 and 40 for the larger HD frame sizghe energy efficiency factor on the flux tensor filter size pro-
video streams as shown in Table 1. The results for 16 differerjides an additional dimension for energy optimization base
filter configurations for both HD and SD video frame sizes aregn output image quality, that is using slightly smaller filte
compared and show substantial improvementin terms of botizes for a marginal reduction in performance.
parallel speed-up as well as performance to power efficiency
Our implementation on the PS-3 Cell/B.E. was able to deliver 6. ACKNOWLEDGMENTS
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