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ABSTRACT 

An optimal Bayesian classifier using mixture distribution 
class models with joint learning of loss and prior probability 
functions is proposed for automatic land cover classification. 
The probability distribution for each land cover class is more 
realistically modeled as a population of Gaussian mixture 
densities. A novel two-stage learning algorithm is proposed 
to learn the Gaussian mixture model parameters for each land 
cover class and the optimal Bayesian classifier that minimizes 
the loss due to misclassification. In the first stage, the 
Gaussian mixture model parameters for a given land cover 
class is learned using the Expectation-Maximization 
algorithm. The Minimum Description Length principle is 
used to automatically determine the number of Gaussian 
components required in the mixture model without 
overfitting. In the second stage, the loss hnctions and the a 
priori probabilities are jointly learned using a multiclass 
perceptron algorithm. Preliminary results indicate that 
modeling the multispectral, multitemporal remotely sensed 
radiance data for land cover using a Gaussian mixture model 
is superior to using unimodal Gaussian distributions. Higher 
classification accuracies for eight typical land cover 
categories over one full Landsat scene in central Missouri are 
demonstrated. 

INTRODUCTION 

Land cover classification from satellite remote sensing data 
has been an active area of research and development since the 
1970's. Multispectral, multitemporal data have been used for 
both supervised and automatic land cover and land use 
classification at different scales. Remotely sensed data from a 
variety of spaceborne and airborne instruments have been 
used including Landsat MSS, Landsat TM, SPOT HRV, IRS, 
and NOAA AVHRR. Various learning approaches including 
Bayesian learning [4], artificial neural networks [I], [2], [3] 
and decision tree learning [5] have been applied to automatic 
land cover classification. In supervised studies, the input 
typically consists of spectral data with labeled classes (i.e. 
ground truth or expert knowledge), and the output consists of 
assigning all of the input data to (usually unique) land cover 
classes. In order to differentiate land cover at the species 
level, ancillary data, such as latitude, longitude, elevation, 
slope, aspect, soil type, landform, etc. is often used. 

Bayesian learning has been widely used as a theoretically 
robust foundation for the classification of remotely sensed 
data. Due to the difficulty in learning the loss caused by 
misclassification, the maximum a posteriori (MAP) estimate 
is frequently used. In order to obtain the MAP estimator, it is 
necessary to model both class-conditional and prior 
probabilities. However, prior information is difficult to model 
or obtain, in which case, MAP estimation reduces to 
maximum likelihood (ML) estimation. The ML classifier 
relies on estimates of the mean vector and covariance matrix 
for each land cover class under the assumption that each land 
cover class can be modeled by a single multivariate Gaussian 
distribution. This approach provides satisfactory results in 
many cases, but failure to use prior information and the 
assumption of a single Gaussian distribution typically limits 
classification accuracy. 

In this paper, we explore the use of an Optimal Bayesian 
Classifier (OBC) using a Gaussian mixture model (GMM) 
and estimation of the loss function for land cover 
classification. The losses caused by misclassification and the 
a priori probabilities are jointly learned by using a multiclass 
perceptron algorithm. A two-stage learning process is 
formulated to reduce the misclassification rate over the 
training set. The result of the first step is the number of 
components and maximum likelihood estimate of the 
Gaussian distribution parameters of all components for each 
land cover class. Gaussian Mixtures are suitable 
approximations for modeling complex distributions [ 101 like 
the land cover classes based on multispectral, multitemporal 
features. 

Finding a ML estimate of the GMM parameters is a non- 
linear constrained optimization problem. The Expectation- 
Maximization (EM) algorithm provides a general approach to 
iterative computation of the ML parameters. In order to select 
the number of components in the mixture model, we use the 
Minimum Description Length (MDL) principle which 
minimizes the encoding length of the model parameters and 
of the ML estimate residuals. The number of model 
parameter is automatically decided using the MDL principle. 

OPTIMAL BAYESIAN CLASSIFIER 

Suppose there are N land cover classes, e , ,  C, , ... , e,. 
For each class C,, i =  1 , 2 , . . . , N ,  we collect a representative 
set of training data, ( x l ,  y! ), ( xf ,yf  ), . . . , ( X: , y:' ), where 
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$ E  RZ, denotes pixel locations, n, is the number of 
training instance and y,' E RP , j = 1,2,. . .,n,, represents the 
associated p -dimensional spectral feature vectors. The 
problem is how to learn an optimal classifier which will label 
new instances with high confidence, given limited training 
data. Ancillary data or contextual information is not used in 
this paper. 

The ML classifier is a parametric classifier that relies on 
the second-order statistics of a Gaussian pdf model for each 
class. The classifier assigns a label, ~ ( y ) ,  to a new instance, 
y , based on following discriminate function: 

(1 )  

where &IC,) is the pdf for class C, in the form of 

&IC,)= ~(=j;p,  ,x/) where p, and x, are the mean vector 
and covariance matrix respectively. Using ML hypothesis, 
the mean vector and covariance matrix are estimated from the 
training data by the estimators, fi, and 2, . 

4 Y  1 = arg max gQc,  ) 
ISrSN 

For OBC, the class label of a new instance y , ~ ( y ) ,  is 
assigned so that the loss caused by misclassification is 
minimized, i.e. 

c(Y> = min xr=, I l k  p ( c k  IY) (4) 
ISiSN 

where lIk is the loss caused by assigning y to class c, but Y 

actually comes from population of class c, , and p(c,ly) is 
the posterior probability. Substituting Bayes' theorem in (4), 
we have 

C(Y) = argmin x,"=, I,, W ~ C ,  l p k k  )/P(Y> (5) 
ISISN 

where p(ck) is a prior probability of class ck . Since p(c,) is 
unknown, we can learn it jointly with I l k .  By denoting 
L,k = fIkp(ck), the class conditional pdf p6 lck ) ,  then ( 5 )  
simplifies to 

( 6 )  

We need to leam the class-conditional pdf, P61c,), and L, , 
for the OBC. Under the assumption that each land cover class 
is generated by a GMM, we employ EM algorithm together 
with MDL principle to recover h4L parameters of p b l c k ) .  
The Llk ,  generalized loss values, are learned using a 
multiclass perceptron algorithm. 

c(Y) = arg min c,"=l L,k P(ylck ' 
ISrSN 

EM Algorithm for Gaussian Mixture Models 
The population of each class C, is modeled as a mixture of 

Li subpopulations, with each component being a Gaussian 
distribution, 

(7) 

where p:,z: ,  wl are, respectively, the mean vector, 
covariance matrix, and the weights of lth Gaussian 
component. For each class c, , the weights are constrained by 

Denoting the parameters of GMM for the i th class as A, = 
{ w,' , p! , C:, 1 = 1,2,. . ., LI }. The negative log-likelihood for 
the GMM with parameters A, and sample data 
6.: : j = 1,2,. . ., n, } is given by 

(9) 

To find the ML estimate of A , ,  we use the EM algorithm 
which is a general approach to iteratively compute ML 
estimates when the observations are incomplete [6] .  The 
incompleteness arises from the fact that the original 
population of a given data is unknown. If the population 
ownership were known for each data point, finding an ML 
estimate of the parameters would simply be a matter of 
finding the sample mean and covariance matrix for each 
population of data, then determining the weight of each 
component by the fraction of points in the sample belonging 
to each population. 

The EM algorithm proceeds iteratively in two steps: E-step 
and M-step. Using the M th estimate of the GMM parameters, 
the E-step solves for the n t h  ownership probabilities, 
e(y;)('), which is the probability that the data point, y:, 

belongs to population generated by I th Gaussian of class C, . 

- log(L(4 )>= -c1'=, log PCv:IC, 1. 

The M-step updates the ML estimates of the GMM 
parameters using the previous estimate of ownership 
probabilities. The iterative formula for updating w: , p:, and 

X I  are as follows: 
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The EM algorithm generates a new estimate A,('+') from an 

existing A,("), for n = OJ,. . . until convergence. A,(') can be 
initialized using certain conventional clustering, say k-means 
clustering, with w,'(O). pf(O), E:(') computed as the sample 
estimates for each cluster I. 

Minimum Description Length Encoding 
The ML estimate of GMM parameters is unable to evaluate 

the complexity of the mixture model that is the number of 
Gaussian components for each land cover class. We address 
this problem by applying the MDL principle. The reason for 
choosing MDL is its information-theoretic grounding: the 
model that can be encoded most eficiently while explaining 
the observations is the best. For this purpose, the number of 
bits required to encode the model and the residuals is used. 
The goal then is to find the ML model parameters A, that 
also minimize the total encoding length. The encoding has 
two parts, one part for the model and another for the data 
using the model. The overall code length for class c, to be 
minimized is 

c(b:h) = C M h )  + C,,((Y,]IA,) (14) 
where C ,  C, , and C,, denote the appropriate encoding 
length in terms of bits for the OBC estimator, model 
parameters, and data residuals respectively. 

The model parameters consist of three different 
components: weights, means, and covariance matrices. For 
computing the coding cost of these real-valued parameters, 
the expression derived by Rissanen [7] in his optimal 
precision analysis is used. For encoding K independent real- 
valued parameters characterizing a distribution used to 
encode D data points, the code length is (K/2)logD. Thus 
CM(A,)=(K/2)logn,, where K is the total number of 
parameters. Furthermore, we need to encode the data given 
the model. Since we know the likelihood of data from the 
mixture model, the optimal number of bits required to encode 
this is just the negative log-likelihood [7]. Therefore, this 
term is directly derived from the negative log-likelihood of 
the data given the model, presented in (9). Under the 
assumption of Gaussian distribution of the residual, and if the 
residuals are quantized to the nearest E ,  their real precision, 
can be computed according to [8], 

Substituting (15)  into (9) and eliminating the terms 
independent of L, , the total encoding length is 

RY$,) &C;L,w,!Nbl:;p:,EI).  (15) 

c(br 14 ) = (W)Iogn,  - x;=l log&:l wl&: ;I4 3 XI )). (16) 

Algorithm for Estimating GMM Parameters 
Equation (16) is the expression for the complete encoding 
lengths of the models and the data given the models for class 
c,. Ideally, optimization of these encoding lengths with 

respect to all the unknowns should be preformed. However, 
this is prohibitively expensive given the large parameter 
space. So we use a sequential approach by alternating steps of 
ML estimation of the parameters followed by evaluation of 
the model size using the MDL principle. We use an 
ascending greedy procedure which, given a lower bound on 
the number of models, incrementally computes the encoding 
length until it reaches a minimum description length. The first 
stage of the OBC consists of three different parts: the 
initialization step, the EM step, and the MDL step. 

Multiclass Perceptron Algorithm 
We learn L,,'s (see (6)) using a perceptron algorithm [9],  

following is the derivation of a multiclass perceptron 
algorithm. By the definition of loss function, we have 

(17) C : = I  L'(Y:~C~) < c,"=, L P ( Y : l c t )  
j =1,2;..n,, n #  i ,  n , i =  1,2,..-,N 

Let P,' = [Pb:1c ,1Pb:Ic21 . . . ,Pb:IcN)~ and 

L, =(L,,rL,2,...,L,N)' , then(l8)canbewrittenas 

(18) 
Based on (1  8), the multiclass perceptron algorithm with 
parameter q , learning rate, is given by: 

L,' * P,' < L', . P,' 

Initialize L,', i = 42, .  . .,N . 
while not converged 

for i t  1 to N 
for n t 1 to N ,  but n # i 

for j t 1 to n, 

if L,7(1) . P,' 2 L,'(I) . P,' 
then L,('+') = L,'" -qp: 

else L,('+') = L,(') +qp; 

EXPERIMENTAL RESULTS 

We evaluate the proposed approach using a data set with 
supervised classification for the entire state of Missouri at 
30m resolution and 8 land cover classes, shown in Table 1. 
The data provided by the Missouri Resource Assessment 
Partnership is referred to as the MoRAP Phase I1 Missouri 
Land Cover dataset. Our preliminary experiment is based on 
scene 2533 which covers central Missouri near Columbia 
with a diversity of ecological regions and land cover classes. 
The spectral features are from Landsat TM data at two 
scanning time (May and September 1992 respectively). This 
provides a total 12 spectral radiance measurements for each 
pixel (six TM channels at two times). 

The results from four experiments are described. The data 
sets used in the first experiment was the ground truth data 
within scene 2533, a total of 2700 pixels, with 70% used for 
training and 30% for testing. The data set used in the 
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Class Category 

0 Urban 

2 Shrubland 

ID description 

1 Cropland 

# Gaussian Accuracy 
components (YO) 

6 33.67 
5 77.39 
4 58.23 

3 
4 
5 
6 
7 

I [et 

[et - [et - l e t  - I 
Ground truth data 81.22 82.35 84.19 84.57 
Scene 2533 (5%) 73.57 73.53 77.63 6.68 
Scene 2533 (10%) 73.50 73.55 77.24 76.88 
Scene 2533 (70%) 73.23 74.00 77.01 76.95 

Open water 3 99.34 
Sparse vegetated 3 28.33 
Forest 8 87.96 
Woodland 7 62.60 
Herbaceous 10 6 I .96 

SUMMARY 

\Data Set 

Our preliminary results show that modeling the 
multispectral, multitemporal remotely sensed radiance 
features for each land cover class using a GMM yields a 
better classifier than the single Gaussian model. However, to 
fully evaluate the performance of the proposed approach, 
additional experiments are needed to characterize 
convergence of the EM algorithm, suitability of the MDL for 
different classes, spectral heterogeneity of land cover classes 
across scenes, temporal stability of the classes, and 
generalization capability of the GMM. An independent 
accuracy assessment of the Phase I1 labeled land cover data 
set is needed to evaluate the quality of the training data. 
Comparison of the OBC approach with various decision tree 
approaches and neural network based classifiers is also being 

Accuracy (YO) Accuracy (YO) 
achieved by SBC 
Training kesting Trainingbesting 

achieved by OBC 

investigated [l 11. Noise and outliers may have a significant 
influence on the performance of the EM estimator for the 
GMh4 parameters. Robust statistics methods can be used to 
improve the GMM estimation [ 121 
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