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Abstract—Automated histological grading of tissue biopsies
for clinical cancer care is a challenging problem that requires
sophisticated algorithms for image segmentation, tissue archi-
tecture characterization, global texture feature extraction, and
high-dimensional clustering and classification algorithms. Cur-
rently there are no automatic image-based grading systems for
establishing the pathology of cancer tissues. A primary step
in computational histology is accurate image segmentation to
detect significant regions such as nuclei, lumen and epithelial
cytoplasm which together make up a gland structure. We describe
a new approach for tissue segmentation using fuzzy spatial
clustering and level set active contours. The proposed technique
shows improvement in segmentation accuracy and outperform
the classical clustering and level set methods, when compared to
ground truth segmentation.

I. INTRODUCTION

The availability of high resolution multispectral multimodal

imaging of tissue biopsies provides a new opportunity to

develop improved tissue segmentation algorithms for devel-

oping computer-aided diagnostic classification of histological

images in a clinical setting. Automated quantitative grading

of prostate cancer tissue patches that is beginning to compare

favorably with visual analysis by experts for assigning a

Gleason grade to histogological imagery was demonstrated

using a combination of low level image texture features

and high level graph-based tissue architecture features [1].

A multiresolution approach using global texture features in-

cluding first- and second-order statistics combined with a

Gabor filter set was able to achieve over 90% overall accuracy

in distinguishing between cancerous and benign tissue, and

nearly 77% in distinguishing between two complex grades of

cancer (Gleason grade 3 and 4 adenocarcinoma). However,

the architectural features of gland structures including spatial

distribution of cell nuclei and the arrangement of glands

were determined using manual segmentation in [1]. Recently,

semi-automated image segmentation algorithms requiring prior

probability estimates for the lumen structures and pixel-wise

classification was developed to facilitate the extraction of

spatial arrangement information [2]. In this paper, we de-

velop a fully automatic robust image segmentation algorithm

for histopathology imagery using fuzzy spatial clustering for

class initialization, tissue class refinement using vector-based

level sets or geodesic to accurately extract, nuclei, lumen

and epithelial cytoplasm regions. The proposed techniques

are compared with related approaches using qualitative and

quantitative evaluation method.

The paper is organized as follows: Section II describes the

Fuzzy C-means with spatial constraint algorithm, Section III

presents the level sets multiphase scheme. Section IV describes

the geodesic technique. The evaluation process is explained in

section V results are given in Section VI, and the conclusions

in Section VII.

II. FUZZY C-MEANS WITH SPATIAL CONSTRAINT

In this section we describe the method used to initialize

the level set procedure. The FCM algorithm minimizes the

objective function J(U, V ) which is defined by the sum of
similarity measures. The objective function is given by

J(U, V ) =

C∑

i=1

N∑

j=1

um
ij‖ xj − vi ‖

2
(1)

where X = {x1,x2, ...,xN} denote the set of data (pixel fea-
ture vector). V = {v1,v2, ...,vC} represents the prototypes,
known as the clusters centers. U = [uij ] is the partition matrix
which satisfies the condition:

C∑

i

uij = 1 ∀j (2)

m is a fuzzifier which indicate the fuzziness of membership

for each point. FCM algorithm is based on an iterative process

by minimizing the distance between each point and the proto-

types. The objective function Eq. 1 does not incorporate any

spatial information. It is shown that the spatial information

brings more robustness and efficiency to the fuzzy c-means

algorithm [3], where a second term to include the spatial

information is incorporated in the FCM objective function.

This is expressed by the following equation:

JM (U, V ) =
C∑

i=1

N∑

j=1

um
ij‖ xj − vi ‖

2

+ α

C∑

i=1

N∑

j=1

um
ij exp(−

∑

k∈Ω

um
ik) (3)

where Ω is a set of neighbors. The parameter α is a weight that
controls the influence of the second term (spatial information).

The objective function (3) has two components. The first com-

ponent is the same as FCM, the second is a penalty term. This

component reaches a minimum when the membership value



of neighbors in a particular cluster is large. The optimization

of (3) with respect to U have been solved by using Lagrange
multiplier technique.

JM (U, V ) =

C∑

i=1

N∑

j=1

um
ij (‖ xj − vi ‖

2
+ α exp(−

∑

k∈Ω

um
ik))

+

N∑

j=1

λj(1 −

C∑

i=1

uij) (4)

the derivative of (4) with respect to uij

∂JM

∂uij

= mum−1
ij (‖ xj − vi ‖

2
+ α exp(−

∑

k∈Ω

um
ik)) − λj (5)

solving for uij we have

uij =

(

λj

m(‖ xj − vi ‖
2

+ α exp(−
∑

k∈Ω um
ik))

) 1

m−1

(6)

solving for λj with respect to the constraint (2) we obtain

C∑

i=1

(

λj

m(‖ xj − vi ‖
2

+ α exp(−
∑

k∈Ω um
ik))

) 1

m−1

= 1

(7)

As λj does not depend in the term of the sum this yield

λ
−1

m−1

j =

C∑

i=1

(

m‖ xj − vi ‖
2

+ α exp(−
∑

k∈Ω

um
ik)

) −1

m−1

(8)

The obtained membership update function is given by

uij =
1

∑C

p=1

(
‖xj−vi‖

2+α exp(−
∑

k∈Ω
um

ik
)

‖xj−vp‖
2+α exp(−

∑

k∈Ω
um

pk
)

) 1

m−1

(9)

The neighboring membership values (upk) influence uij to

follow the neighborhood behavior. For instance if a given

point has a high membership value to a particular cluster

and its spatial neighbors have a small membership values to

this cluster, the penalty term plays the role to force the point

to belong to the same cluster as its neighbors. The weight

α controls the importance of the regularization term. The
prototype update equation is the same as standard FCM.

vi =

∑N

j=1 um
ij xj

∑N

j=1 um
ij

(10)

The spatial constraint FCM (SCFCM) algorithm preforms the

same steps as the original fuzzy c-means algorithm but, the

membership function is computed according to the equation 9.
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Fig. 1. A multi-contour level set initialization with two level set functions φ1 and φ2

(with no overlap), for segmenting a color image u0.

III. MULTIPHASE VECTOR-BASED ACTIVE CONTOURS

In [4], Chan and Vese presented a multiphase extension

of their two-phase level set image segmentation algorithm

[5]. The multiphase approach enable efficient partitioning of

the image into n classes using just log(n) level sets without
leaving any gaps or having overlaps between level sets. This

ensures that each pixel is properly assigned to a unique

class during the segmentation process. The Chan and Vese

multiphase level set image segmentation approach involves

minimization of a reduced or weak Mumford-Shah func-

tional Fn(c,Φ), otherwise referred to as a minimal partition
Mumford-Shah functional [6]:

Fn(c,Φ) =
∑

1≤i≤n=2m

λi

∫

Ω

(u0 − ci)
2 χi dx

︸ ︷︷ ︸

Energy Term

+
∑

1≤i≤n=2m

µi

∫

Ω

|∇χi|

︸ ︷︷ ︸

Length Term

(11)

where, n is the total number of classes associated withm level
set functions, u0 is the gray-level image being segmented,

Φ is a vector of level set functions, c is a vector of mean
gray-level values (i.e., ci = mean(u0) of class or phase i),
χi is the characteristic function for each class i represented
by the associated Heaviside functions H(φi), and (λi, µi)

are constants associated with each energy and length term

of the functional Fn(c,Φ). In order to simplify computation
of the length term in the above reduced Mumford-Shah

energy function, we replace the measure of the characteristic

functions by the sum of the length of the zero-level sets of

φi,
∑

1≤i≤m µi

∫

Ω
|∇H(φi)|. Instead of an unweighted total

length, this approximation weights some edges more than

others, but is faster to compute and still leads to satisfactory

segmentation results.

Chan and Vese also extended their two-phase level set image

segmentation algorithm for scalar valued images to vector-

valued images such as color or multispectral images [7] where

the image is partitioned into piecewise constant vectors in

the spirit of spatially-based vector quantization. In this paper

we combine the multiphase approach with the feature vector

approach to handle both multiple image classes and vector-



valued imagery such as segmenting color or multispectral

images.

In the case of histopathology imaging derived from H&E

stained cancer tissue biopsies four image classes have been

shown to produce good feature sets for image classification-

based cancer grading[1]. For the two level set case (i.e.,

m = 2) the image domain Ω is partitioned into at most
four classes. Let c = {c00, c01, c10, c11} represent the set of
average image feature vectors (ie three channel color) within

each class or phase cij, and Φ = (φ1, φ2) represent the
two level set functions. The multiphase vector-based energy

functional Fn(c,Φ) is defined as,

Fn(c,Φ) =λ1

∫

Ω

‖ u0 − c00 ‖2 (1 − H(φ1))(1 − H(φ2))dx

+ λ2

∫

Ω

‖ u0 − c01 ‖2 (1 − H(φ1))H(φ2) dx

+ λ3

∫

Ω

‖ u0 − c10 ‖2 H(φ1)(1 − H(φ2)) dx

+ λ4

∫

Ω

‖ u0 − c11 ‖2 H(φ1)H(φ2) dx

+ µ1

∫

Ω

|∇H(φ1)| dx + µ2

∫

Ω

|∇H(φ2)| dx (12)

The Euler-Lagrange equations are obtained by minimizing Eq.

12 and embedding c and Φ in a dynamical system as [4]

dφ1

dt
= δ(φ1)

{

µ1 div
( ∇φ1

|∇φ1|

)

−
{
(λ1 ‖ u0 − c11 ‖2 −λ3 ‖ u0 − c01 ‖2)H(φ2)

+ (λ2 ‖ u0 − c10 ‖2 −λ4 ‖ u0 − c00 ‖2)(1 − H(φ2))
}}

,

dφ2

dt
= δ(φ2)

{

µ2 div
( ∇φ2

|∇φ2|

)

−
{
(λ1 ‖ u0 − c11 ‖2 −λ2 ‖ u0 − c10 ‖2)H(φ1)

+ (λ3 ‖ u0 − c01 ‖2 −λ4 ‖ u0 − c00 ‖2)(1 − H(φ1))
}}

(13)

where, cij is the mean vector of all pixel-based vectors

associated with each class or phase.

c11 =

∫

Ω
u0 H(φ1)H(φ2) dx
∫

Ω
H(φ1)H(φ2) dx

c10 =

∫

Ω
u0 H(φ1) (1 − H(φ2)) dx
∫

Ω
H(φ1) (1 − H(φ2)) dx

c01 =

∫

Ω
u0 (1 − H(φ1))H(φ2) dx
∫

Ω
(1 − H(φ1))H(φ2) dx

c00 =

∫

Ω
u0 (1 − H(φ1)) (1 − H(φ2)) dx
∫

Ω
(1 − H(φ1)) (1 − H(φ2)) dx

and δ(φk) = H ′(φk) is the Dirac delta function. For numerical
stability of the delta function, Chan and Vese propose using a

regularized Heaviside function

H2,ǫ(x) =
1

2

[

1 +
2

π

{

tan−1
(x

ǫ

)}]

with

δǫ(x) =
1

π

ǫ

π2 + ǫ2

The motivation for using a multiphase, rather than a two-phase,

level set framework is to accurately detect adjacent regions that

meet at a junction (i.e., the triple junction in [4]). However, as

the number of regions grows exponentially with the number

of level set functions, its best to use a small set of level set

functions (typically two or three or equivalently, four or eight

regions, respectively).

IV. GEODESIC LEVEL-SETS SEGMENTATION

In classical level set-based geodesic active contours [8], the

level set function φ is evolved using the speed function,

∂φ

∂t
= g(u0)(Fc + K(φ))|∇φ| + ∇φ · ∇g(u0) (14)

where Fc is a constant, K is the curvature term,

K = div

(
∇φ

|∇φ|

)

=
φxxφ2

y − 2φxφyφxy + φyyφ2
x

(φ2
x + φ2

y)
3

2

(15)

and g(u0) is the edge stopping function. Edge stopping
can be any decreasing function of the image gradient. For

histopathology image segmentation, we use Beltrami color

edge stopping function defined as

g(u0) = exp(−abs(det(E))) (16)

where E is

E =










1 +

∑

i=R,G,B

(
∂u0,i

∂x

)2 ∑

i=R,G,B

∂u0,i

∂x

∂u0,i

∂y

∑

i=R,G,B

∂u0,i

∂x

∂u0,i

∂y
1 +

∑

i=R,G,B

(
∂u0,i

∂y

)
2










(17)

The constant velocity Fc pushes the curve inwards or

outwards depending on its sign. The regularization term K
ensures boundary smoothness. The external image dependent

force g(u0) is used to stop the curve evolution at object
boundaries. The term ∇g · ∇φ is used to increase the basin
of attraction for evolving the curve to the boundaries of the

objects.

The classical geodesic active contours is two phase and can

segment an image into only two classes. In order to segment

the three-class histopathology images we use two level sets,

first level set segments the lumen regions from the rest of

the image, second level set segments nuclei regions from the

rest of the image. Both level sets are initialized outside of

their region of interest (lumen and nuclei regions respectively)

and to move inwards. SCFCM mask (Section II) is used for

initialization, two binary masks one for lumen one for nuclei

classes are produced from the multi-class SCFCM mask (1-

for lumen 0-for everything else and 1-for nuclei and zero

for everything else respectively). Both masks are dilated with

a large enough structuring element to ensure that they fully

contain the regions of interests. The geodesic active contours

are initialized from the dilated masks.



V. EVALUATION

To evaluate the segmentation accuracy we use supervised

criterion [9]. The criterion is based on region overlapping

where each region from the segmented image is overlapped

with each region of the ground truth image. The high percent-

age of the overlapping indicate how much the two images are

close comparing each other. However the under-segmentation

can provide large overlapping areas which introduce miss

estimation in segmentation quality. The used criterion take into

account this aspect and penalize either the under-segmentation

or over-segmentation. The evaluation measure incorporate the

following points:

• Localization: the detected regions should be spatially

coherent (eg. position, shape, size...) with those present

in the reference,

• Over-segmentation: this situation is considered as dis-

turbing and has to be penalized in the quality index,

• Under-segmentation: this situation is considered as a

segmentation error and has also to be penalized.

Let RRef
i and RSeg

j be two classes belonging respectively to

the reference IRef and to the segmentation result ISeg (i =
1..NRRef , j = 1..NRSeg where NRRef is the number of

regions of the reference and NRSeg the number of regions of

the segmentation result. The matching index MI is over all

regions is given by:

MI =
∑

j,maxiCard(RRef

i
∩R

Seg

j
)

Card(RRef
i ∩ RSeg

j )

Card(RRef
i ∪ RSeg

j )
ρj (18)

where Card(X) is the number of pixels of X . The weighting
factor ρj expresses the importance of the region j in the image
and permits to give to small regions less influence in the

quality measure.

ρj =
Card(RSeg

j )

Card(ISeg)
(19)

The equation (18) express a morphological relation

between two regions/classes. Each class of a segmentation

result is compared with the corresponding one in the

reference by taking into account the maximum overlapping

surface. For instance, if there are two regions in ISeg that

intersect with a region of IRef , the measure considers the

maximum of intersection. However, the no perfect matching

is penalized by the normalization term Card(RRef
i ∪ RSeg

j ).
In the case of the perfect matching the indexMI is equal to 1.

The over- and under-segmentation errors are described by

η =







NRRef/NRSeg if NRSeg ≥ NRRef

log(1 + NRSeg/NRRef ) otherwise
(20)

The final evaluation criterion H is then given by the

following equation:

H =
MI + m × η

1 + m
(21)

where m is a weighting coefficient which controls the

importance of the over-/under-segmentation errors in the judg-

ment. As shown in [9] m = 0.2 realize a good trade off
between between different evaluation parameters. For the all

experiment m is set to 0.2.

VI. RESULTS AND DISCUSSION

The experiments have been performed over histopathology

images1. We applied clustering based methods, Level set

based active contours segmentation methods and combination

of both. The tested clustering methods are: K-means, Fuzzy

C-means, and SCFCM (see section II). We have used two

categories of level sets methods multi-phase described in

section III and geodesic described in section IV. Figure 2

shows the segmentation results of the different techniques.

Figure 2(a) represents the original images Gleason Grade 3

tissue composed of nuclei, lumen, and epithelial cytoplasm.

Next, figure 2(b) the manual segmentation with 3 classes: red

(nuclei), green (lumen) and yellow (cytoplasm).

The result of k-means and FCM algorithms are shown

respectively in figure 2(c) and figure 2(d). The two algorithms

provide similar results. Both methods produce more lumen

regions compare to the ground truth. This is partly because

some small dominantly white regions within the cytoplasm

are not finely classified in the coarse manual segmentation

and partly because both K-means and Fuzzy C-means do

not incorporate any spatial information and tend to fragment

regions. The SCFCM overcome the latter deficiency using

spatial correlation to reduce this effect as shown in figure 2(e),

the segmented regions look more spatially coherent but the

segmentation is still poor comparing to the ground truth.

Both of the level set-based segmentation approaches

geodesic figure 2(f) and vector multiphase (figures 2(g), 2(h))

improve the segmentation quality and provide more accurate

regions. But for histopathology image segmentation, vector

multiphase level is more reliable and robust compared to

geodesic active contours. Geodesic active contours is more

sensitive to initialization (should start either completely inside

or outside of the regions of interest). It suffers from contour

leaking on weak edges (ie. some nuclei edges), and early

stopping on background edges (ie. cytoplasm texture). Due

to these problems some significant nuclei regions disappear

(figure 2(f)).

The multiphase vector-based level set (MVLS) is used with

two different initialization concepts: random circles (figure 1)

and SCFCM segmented regions. As expected MVLS com-

bined with SCFCM (figure 2(h)) produces better results than

MVLS (figure 2(g)) with random initialization specially in the

lumen regions. MVLS-SCFCM segmentation results appear

more accurate than the other algorithms comparing to the

original image and the ground truth. Statistics of algorithms

comparison is explained in the next paragraph.

Table I compares performance of different segmentation

methods for each class in terms of area percentage Eq. 22,

1Histopathology imagery provided by Michael Feldman (Dept. of Surgical
Pathology, Univ. of Pennsylvania) and ground truth from Anant Madabhushi
(Rutgers).



Method Area % Overlap % Normalized overlap %

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

Ground truth 28.6 11.1 60.3 - - - - - -

K-means 28.2 37.5 34.0 22.2 10.3 28.2 65.0 27.4 42.3

FCM 28.1 37.8 34.1 22.4 10.4 28.1 65.3 27.0 42.5

SCFCM 26.8 32.1 41.2 21.6 10.3 34.1 64.1 31.2 50.7

Geodesic-SCFCM 27.3 16.7 56.0 21.2 9.1 47.2 61.2 48.8 68.3

MVLS-random 28.9 23.6 47.6 22.3 9.9 40.5 63.3 40.2 60.1

MVLS-SCFCM 27.7 20.4 51.9 22.2 9.6 44.3 65.3 43.9 65.3

TABLE I

COMPARISON STATISTIC MEASURES

(a) Grade 3 (b) Gound truth

(c) K-means (d) FCM

(e) SCFCM (f) Geodesic

(g) MVLS Random (h) MVLS SCFCM

Fig. 2. Automatic segmentation of Gleason grade 3 histopathology image with nuclei shown in red, lumen in green, epithelial cytoplasm in yellow.



overlap percentage Eq. 23, and normalized overlap percentage

Eq. 24. These additional measures comes to enforce the

evaluation criteria described in Section V. In table I Class

1, Class 2, and Class 3 represent nuclei, lumen and cytoplasm

classes respectively.

Area =
card(Ri)

Total number of points
× 100 (22)

Overlap =
Card(RRef

i ∩ RSeg
i )

Total number of points
× 100 (23)

Normalized overlap =
Card(RRef

i ∩ RSeg
i )

Card(RRef
i ∪ RSeg

i )
× 100

(24)

Distribution of the different classes in the reference image

is: nuclei 29%, lumen 11%, and cytoplasm 60%. For the nuclei

class all tested algorithms provide areas similar to the area in

the reference image. The major difference reside in lumen and

cytoplasm classes due to the additional small lumen regions

detected. Geodesic-SCFCM produces the best results for the

area measure, followed by MVLS-SCFCM. The overlap mea-

sures between ground truth class and the corresponding one

in the automatic segmentation are given in third major column

of the table I. There are high overlap percentages for nuclei,

but much less for lumen and cytoplasm. Level set methods

provides better spatial precision particularly for lumen class.

They tend to shrink lumen and nuclei regions, this reduces

the overlap area with the reference image. Although the low

percentage of overlapping in lumen area, level set methods

provides better results in terms of accuracy and localization.

This is shown in the next fourth major column of table I. For

the nuclei class all the methods presents good performances

64% in average. The lumen class produces low percentage

27% for K-means and FCM, 31% for SCFCM, Geodesic-

SCFCM with 48%, MVLS-Random 40% and MVLS-SCFCM

provides 43%. For cytoplasm class the level set algorithms

give better results an average of 64%.

As more reliable measures, we compute the criteria H
Eq. 21 and MI Eq 18 (see section V). These criteria are not

symmetric, so the measure is applied in two different ways,

automatic segmented image (Seg) versus groud truth (GT) and

vice versa. Table II shows the segmentation quality compared

to the reference image over all classes. Geodesic-SCFCM

gives higher values for MI measure producing 78% closer to

the reference image. But when the over-under segmentation

penalty is introduced in H criterion, MVLS-SCFCM outper-
forms all the tested methods.

VII. CONCLUSION

In this paper we described a robust algorithm for fully

automatic tissue segmentation of glandular structures in

histopathology imagery. An accurate unsupervised initializa-

tion is provided using the spatial constraint fuzzy c-means

developed previously by our group. The initial image clus-

ters which may not be spatially contiguous with biological

regions of interest are refined using an extended active contour

algorithms to handle complex biological structures in color

imagery. We evaluate the segmentation accuracy according to

the manual segmentation (ground truth). The proposed method

outperforms the classical methods for all classes of regions,

nuclei, lumen and cytoplasm. The quality of segmentation

is important since it will be used for tissue classification in

further future work.
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Algorithm MI % H % MI % H %

Seg → GT Seg → GT GT → Seg GT → Seg

K-means 69.1 60.0 68.5 60.6

FCM 69.0 60.1 68.8 60.06

SCFCM 72.0 64.6 69.2 62.9

Geodesic-SCFCM 78.9 68.2 78.35 67.9

MVLS-random 75.8 67.8 71.4 64.9

MVLS-SCFCM 78.2 70.8 73.6 68.1

TABLE II

SEGMENTATION EVALUATION USINGMi AND H CRITERIA


