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ABSTRACT

Collecting ground-truth or gold standard annotations from ex-

pert pathologists for developing histopathology analytic al-

gorithms and computer-aided diagnosis for cancer grading is

an expensive and time consuming process. Efficient visu-

alization and annotation tools are needed to enable ground-

truthing large whole-slide imagery. KOLAM is our scalable,

cross-platform framework for interactive visualization of 2D,

2D+t and 3D imagery of high spatial, temporal and spectral

resolution. In the current work KOLAM has been extended

to support rapid interactive labeling and correction of auto-

matic image classifier-based region labels of the tissue mi-

croenvironment by pathologists. Besides annotating regions-

of-interest (ROIs), KOLAM enables extraction of the corre-

sponding large polygonal image sub-regions for input into au-

tomatic segmentation algorithms, single-click region label re-

assignment and maintaining hierarchical image sub-regions.

Experience indicates that clinicians prefer simple-to-use in-

terfaces that support rapid labeling of large image regions

with minimal effort. The incorporation of easy-to-use tissue

annotation features in KOLAM makes it an attractive candi-

date for integration within a multi-stage histopathology image

analysis pipeline supporting assisted segmentation and label-

ing to improve whole-slide imagery (WSI) analytics.

Index Terms— histopathology, tissue microenvironment,

interactive segmentation, whole-slide imagery, supervised

classification, visualization

1. INTRODUCTION

Clinical decision support systems (CDSSs) play a crucial role

in the clinical process, from diagnosis and investigation to

treatment and long-term care [1]. CDSSs are currently fac-

ing a deluge of image data from multiple sources including

radiology and pathology. Advances in imaging techniques,

high-throughput technologies, pathology informatics, bioin-

formatics, need for exploratory analysis of WSI and personal-

ized medicine data sets continue to generate big data volumes

in need of immediate analysis. The web-based Cancer Dig-

ital Slide Archive [2] is one such repository, that integrates

imaging, genomic and clinical datasets.

The approach of manually labeling patient biopsy slides

for automatic algorithm development is not scalable with the

burgeoning volume of biopsy data, due to subjectivity of in-

terpretation by pathologists, fatigue and likelihood of errors.

The expert variability in the visual inspection process is quite

high with up to a 20 percent discrepancy between different

reviewers [3]. By providing efficient methods for objective

quantification of image features, CDSSs have emerged as use-

ful decision-making tools involving biomedical imaging.

In this paper, we focus on an improved human-computer

interface for rapid annotation of the tissue microenvironment

in histopathology WSI using a combination of automatic im-

age classification with manual expert region label correction.

Our system is focused on further investigating the correla-

tion between microenvironment image features derived from

stromal and epithelial regions and patient survivability be-

yond five years post-diagnosis [4]. We apply automated

image analysis methods to identify and distinguish between

stromal and epithelial regions using hematoxylin and eosin

(H&E) stained histopathology digital slides [5][6][7][8][9].

KOLAM[10][11][12][13], our cross-platform and scalable

digital light table or virtual microscope framework has been

extended to support visualization and fast, reproducible semi-

supervised annotation of histopathology slides. KOLAM also

provides interfaces for (semi-)automated labeling and man-

ual correction or relabeling of stromal, epithelial and other

regions of interest in the tissue microenvironment.

2. RELATED WORK

Several new methodologies focusing on WSI data analysis

have been developed over the past few years [14][15][16]

[17][18][19]. Another aspect of handling WSIs is the in-

creasing number of custom data formats. Increasing clini-

cal and commercial interest in digital (histo)pathology along-

with the current non-standardized proprietary large image for-

mats has led to the Digital Imaging and Communications in

Medicine (DICOM) Standards Committee proposing Supple-

ment 145 for WSI, compatible with current enterprise-wide
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Picture Archiving and Communication System (PACS) soft-

ware widely used by hospital information systems for radi-

ology imagery [20]. The DICOM standard for histopathol-

ogy will enable the electronic display, sharing, storage and

management of large multi-resolution multi-planar WSI in a

tiled pyramid image format. Each tile can be compressed us-

ing JPEG, JPEG2000 or other compression and coding meth-

ods. The OME Remote Objects (OMERO) [21] software plat-

form is a collaborative effort towards building open-source

data access and interoperability tools for WSI data. WSI han-

dling also requires capable visualization systems. Popular ex-

amples are Imaris [22], Fiji [23], ePathology (Aperio) Im-

ageScope [24], and Ventana Virtuoso and PathXchange [25].

3. KOLAM FOR HISTOPATHOLOGY VISANALYSIS

KOLAM is a large data visualization environment with robust

support for out-of-core multiresolution tiled imagery across

application domains [10][11][12][13]. In addition to the func-

tionality of a virtual microscope [19] or light table, KOLAM

has been extended to support WSI data and is currently being

used for generating ground-truth or supervised region labels

for input to image classification training algorithms. The suit-

ability of KOLAM for WSI (big data) handling stems from

the following aspects of WSI. Firstly, WSI come with a wide

variety of image and metadata formats, with a variety of for-

mat specifications and proprietary aspects; secondly, issues

pertaining to the large images, of the order of tens of giga-

bytes; and finally, the need for an intuitive yet efficient hu-

man computer interface for interactive visualization, naviga-

tion, manipulation and labeling. The KOLAM interface envi-

ronment aims to provide the pathologist with easy-to-use vi-

sualization and annotation capabilities in a way that captures

the expert’s knowledge that is scalable [21]. The KOLAM

GUI facilitates and enhances opportunities for scientists and

experts to make new inferences using the rich feature set of

visanalysis tools, that would otherwise be difficult.

3.1. Big Data Out-of-Core Visualization

KOLAM handles big data imagery by exploiting a multi-scale

tiled memory efficient data structure [13] and out-of-core

cache management strategies [10] as shown in Figure 1. At

the heart of KOLAM is a multi-threaded image-rendering

engine, capable of rapidly displaying multiple images and

information layers as well as a temporal collection of multi-

image (sequence) layers for display. The partitioning of each

image into tiles allows fast, scalable random access to spa-

tially coherent regions of the imagery across resolutions. This

permits on-demand access to arbitrary regions and scales of

the image needed for display, as well as application-level

out-of-core management of memory [10]. Multiresolution

(pyramidal) tiling allows for the interactive zooming of the

image across scale [13]. Use of thread synchronization and

Fig. 1. KOLAM’s multi-threaded image rendering engine,

showing the roles and interactions of the tile cache, tile re-

quest queue, display and reader threads for managing large

multiscale tiled imagery with multiple layers of information

including segmentation and classifier label annotations.

CPU load balancing schemes allow KOLAM to manage out-

of-core I/O and CPU demand patterns for visualizing large,

tiled imagery. Furthermore, KOLAM’s spatio-temporal dual

cache system [10] permits the interactive visualization and

playback of multiresolution image sequences. By using KO-

LAM features such as overlays, altering projection parame-

ters, or interactively modifying the image resolution level the

user can generate multiple views of the data by composing

and organizing it in different ways. Additionally, custom

view settings for data generated by one user may be stored

and thus shared with other users of the WSI.

3.2. Support for Multiple WSIs and Metadata Types

A number of image formats capable of supporting the huge di-

mensions and metadata requirements of WSIs have emerged

recently. The Aperio ‘.svs’ format is being supported in mi-

croscopy software from multiple vendors. The BigTIFF for-

mat can also handle the large sizes of WSI bio-images. KO-

LAM supports these as well as the formats provided through

the LOCI Bio-Formats Java library [26] by interfacing with

the appropriate readers. KOLAM provides a uniform inter-

face for access to metadata and can query or update metadata

information for all supported image file formats.

3.3. Interactive Region-of-Interest (ROI) Selection

The first step prior to ground-truth generation involves the

clinicians interactively visualizing the WSI data, and anno-

tating ROIs (ie. regions with abnormal tissue characteris-

tics that may be cancerous) via KOLAM’s overlay drawing

planes. These annotations are saved in XML format and may

be reloaded for later use or shared between users. These re-

gions are sometimes very large themselves (e.g. a WSI image

of 130K×100K pixels, with ROIs of sizes 30K×20K pixels).
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Fig. 2. KOLAM’s role in the training and testing steps of

the classifier algorithm. The input image and corresponding

partition IDs are provided to the classifier module, which the

outputs new tissue microenvironment labels. The expert re-

labels incorrectly labeled classes. These corrections are input

to the classifier module for training.

In order to focus more closely on select areas within these

ROIs, and to keep the burden of computational complexity as

small as possible, the ROIs are further partitioned into image

chips for individual processing. In the following steps, KO-

LAM is used first to assign new tissue labels for some of the

segments generated by the applied segmentation algorithm.

Subsequently, KOLAM is used to relabel some of the tissue

classes assigned by the classifier algorithm. The details of the

training and testing steps are presented below.

3.4. Ground-Truth Creation and Relabeling

The complexity of the ground-truth collection process is typ-

ically governed by (a) the quality of the imaging system, (b)

standardization of data access [21], (c) clinical dignostic re-

quirements, and (d) access to clinical patient data. The pro-

cess of segmentation relabeling for classification involves the

two stages of training and testing. Designation of ground-

truth tissue microenvironment labels is the focus of the train-

ing step in the processing pipeline. In Figure 2, the train-

ing step includes every module except the classifier module

and its input, which is solely part of the subsequent testing

step. Prior to tissue label reassignment by the expert, the

image chips need to be segmented and assigned preliminary

labels. Our group has been working on various aspects of

histopathology image segmentation ([5][6][7]) which we use

to generate initial partitions. For the first training subimage,

the expert sees the partition boundaries in a single class color

that is overlaid on top of the underlying image. The patholo-

gist can then change the color of any partition from epithelia

to stroma or vice versa with just a few user interaction events.

Tha manual assignment of ground-truth labels continues until

the pathologist is satisfied with the labels assigned to parti-

tions without having to tediously draw any boundary contours

in the image. The partitions are essentially an unlabeled seg-

mentation. These corrected tissue labels are then passed from

KOLAM to the image region classifier module that can be

applied to other test (sub)images with segmentations.

Prior to the testing step, the classifier module which re-

ceived ground truth classes from KOLAM during the train-

ing step is trained on these classes in order to produce tissue

labels for images outside of the original training image set.

During the active learning testing phase (see Figure 2) the

classifier generated tissue microenvironment labels on new

(sub)images are used as input to the relabeling system. The

expert visualizes these modified results, and may correct the

annotations (generate ground truth) as necessary. Figure 3

illustrates an example of reassignment of a label or label an-

notation correction during the testing step. This shows the

benefits of various KOLAM interface components supporting

ground-truth region label annotations.

4. CONCLUSION

Pathologists have a strong and growing need for tools to

lessen the burden involved in analyzing and annotating large

numbers of whole-slide histopathology imagery for training

CMSS/CAD systems, and for sharing results among experts

using a web-based interface. Algorithm designers require

a means to interactively visualize the results of their seg-

mentation algorithms on the WSI data, a means to generate

ground-truth for training classifiers and improving and fine-

tuning the performance of other algorithmic modules. KO-

LAM provides capabilities to meet both computational and

clinical needs, as well as to bridge the gap between patholo-

gists and algorithm developers. KOLAM provides a virtual

microscope interface supporting a variety of WSI formats

along with a novel method for rapidly labeling and correcting

the tissue microenvironment stroma-epithelia region labels.

KOLAM thus provides visanalysis software tools for medical

and computational experts to develop the evolving field of

computational histopathology.
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