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ABSTRACT

RTip is a tool to quantify plant root growth velocity using
high resolution microscopy image sequences at sub-pixel ac-
curacy. The fully automated RTip tracker is designed for
high-throughput analysis of plant phenotyping experiments
with episodic perturbations. RTip is able to auto-skip past
these manual intervention perturbation activity, i.e. when the
root tip is not under the microscope, image is distorted or
blurred. RTip provides the most accurate root growth velocity
results with the lowest variance (i.e. localization jitter) com-
pared to six tracking algorithms including the top performing
unsupervised Discriminative Correlation Filter Tracker and
the Deeper and Wider Siamese Network. RTip is the only
tracker that is able to automatically detect and recover from
(occlusion-like) varying duration perturbation events.

Index Terms— Plant growth, Shi-Tomasi features,
Kanade-Lucas-Tomasi, Radon Transform, Video Tracking

1. INTRODUCTION

Observing growth kinematics of roots under various experi-
mental conditions is an important component of plant physiol-
ogy studies. In some experiments, root needs to be tracked be-
fore and after some experimental plant manipulation of vary-
ing duration. In this work the aim is to track growth rate, root
tip needs to be tracked accurately at subpixel resolution before
and after manipulations. Various image analysis and single-
object tracking methods may be suitable to track the root tip
depending on the microscopy and experimental setup.

There has been extensive work done on plant image analy-
sis for understanding root kinematics. Van der Weele et al. [1]
used computational image analysis of deformable motion [2]
at high resolution for root growth in RootflowRT. Jiang et
al. [3] estimated the non-rigid motion of plant roots by us-
ing a combination of matching and tensor methods. Wan-
genheim et al. [4] developed a confocal microscope setup for
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Fig. 1. Initial BB in frame 0 and tracking results on frame 12,
of RTip, CSRT, SiamDW, KCF and TLD with velocity errors.

vertical sample mounting and integrated directional illumi-
nation, and a tracker called TipTracker, a custom software
for automatic tracking of diverse moving objects usable on
various microscope setups. Baskin and Zelinsky [5] did a
study on kinematic characterization of root growth by using
Stripflow, which was introduced in a previous study by Yang
et al. [6], leverages the prior knowledge that movement at
nearby points are similar. Other tools have been developed
to analyze the growth of root tips in experimental setups with
roots grow vertically at lower resolution. The root tip analy-
sis tool called ARTT combined a segmentation algorithm with
additional imaging filters for 2D tip detection was proposed
by Russino et al. [7]. French et al. [8] implemented Root-
Trace, combined a particle-filtering algorithm with a graph-
based method to trace the root tip.

Complex biological protocols for characterizing the
growth kinematics of plant phenotypes now have additional
requirements for accurate video tracking. In this case the
experiments required manual manipulation of the plant shoot
during growth; perturbations that involved moving the plant
so that the root tip becomes ”occluded” (i.e. outside the mi-
croscope field-of-view) for an unknown duration. The plant
is manipulated then placed back on the stage and the root can
reappear in a new position. During this interval imaging con-
tinues, to preserve the time-base, so frames may be empty or
blurred, and the continuity of the root tip trajectory is broken.

We developed RTip, a fully automated tracking tool to
measure root tip motion in sequences where the root is imaged

�������	�	����	�
��	�����
��������������� ���������

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on February 04,2022 at 23:27:21 UTC from IEEE Xplore.  Restrictions apply. 



at high enough resolution and where there are episodic per-
turbation discontinuities in the position of the root. RTip esti-
mates a smooth displacement between bounding boxes (BB)
while tracking, producing accurate velocity estimates. Ex-
periments done on two root tip image sequences show that
RTip outperforms six tested trackers in velocity accuracy, in-
cluding Discriminative Correlation Filter Tracker (CSRT) [9]
and SiamDW tracker [10]. Although both are high quality
trackers, the shape and size of the BBs change during track-
ing, which induces centroid jitter errors and leads to impre-
cise velocity estimates compared to RTip. Fig. 1 shows initial
BB for frame 0 and tracking results on frame 12 for RTip,
CSRT, SiamDW, Kernelized Correlation Filters (KCF) [11]
and Tracking, Learning and Detection (TLD) [12] with cor-
responding velocity errors, where changes in BB size and lo-
cation can be seen. RTip is designed to automatically detect
perturbed frames for skipping (pause tracking), when a valid
frame comes after the perturbed ones to reinitialize and restart
the tracker (continue tracking).

There are several novel contributions in this study. RTip,
is a fully automated high-throughput root tip tracker for kine-
matic measurement and phenotype screening developed for
use with high resolution microscopy imaging and a com-
plex experimental setup involving episodic perturbations. To
our knowledge, these conditions cause other state-of-the-art
trackers to fail. RTip handles automatic detection and skip-
ping of the perturbed frames in the sequence by using a fast
and efficient root tip detection algorithm. Occlusion handling
uses the Radon transform and a robust Kanade-Lucas Tomasi
tracker feature matching to detect and localize a distorted root
tip and restart tracking based on forward backward error and
robust outlier handling. Root displacements are estimated
with sub-pixel accuracy and minimal centroid jitter noise.

2. RTIP FOR TRACKING WITH PERTURBATIONS

2.1. Automatic Initialization and Reinitialization (AIR)
with Bounding Box (BB) Improvement

For initialization, the root tip is found and localized roughly
in the image with an initial BB, using Normalized Cross Cor-
relation (NCC) [13] for template matching with an example
cropped root tip image [14]. To improve accuracy, BB can-
didates around this initial BB are sampled and Shi-Tomasi
structure tensor compact corner-like features extracted [15].
For each pixel, the minimum eigenvalue of the tensor above a
threshold are selected for matching.

A robust version of Kanade-Lucas Tomasi (KLT) feature
tracker [16], rKLT is used to track features between consecu-
tive frames. KLT computes the displacement in textured win-
dows between sequential images. Root tip motion is modeled
as a translation plus noise and outliers to handle root perturba-
tions, aiming to minimize the error in the motion vector. The
rKLT uses the Forward-Backward Error (FBE) [17] to deter-

mine the inliers while tracking the features between frames.
To find a good translation, rKLT tracks feature points, for-

ward and backward between consecutive frames. The dis-
tance between feature point p, and corresponding point ob-
tained by the backward tracking of p is measured as FBE.
If the distance is larger than a threshold for any p, then it is
filtered out as an outlier. The number of inliers are stored for
each candidate BB, and the candidate with the highest number
of inliers is selected as the next BB. If the maximum number
of inliers is smaller than a threshold, the current frame is not
a valid, high quality frame and no good transformation can
be estimated, hence it is skipped. The next frame is used to
initialize or reinitialize the tracker using the same procedure.

2.2. Automatic Invalid Frame (AIF) Detection-Recovery

The Radon transform (RT) is an operator to calculate projec-
tions of an object (2D or 3D) along specified directions, i.e.
rotation angles, using line integrals. The coordinates of the
original image are rotated by an angle θ, and a set of parallel
lines that are perpendicular to the rotated coordinates are used
for integration as shown [18],

Rθ(x
′) =

∫ ∞

−∞
f(x′ cos θ − y′ sin θ, x′ sin θ + y′ cos θ)dy′

where,
[
x′

y′

]
=

[
cos θ sin θ
− sin θ cos θ

] [
x
y

]
(1)

The RT computes projection vectors for each θ ∈ [0, 180],
but a simplified version with only 0 and 90 degree vectors can
be used for segmentation of suitable images [19]. For each
frame, the simplified RT vectors are calculated using 0 and
90 degree projections. The RT projection vectors of current,
u, and previous frame, v, are compared using the Chebyshev
distance, defined as,

DRT
i,θ(u,v) := max

p
|up − vp| (2)

Distances between corresponding RT projection vectors (pro-
files), DRT

i,0 and DRT
i,90, between current ith and previous

frames is used to detect the root tip object. A threshold on the
distance value is used to decide whether there is an in-focus
root tip present in the image. When one of the DRT

i values is
greater than a given threshold, the current frame is identified
as a perturbed frame, i.e. no root tip object in frame. The
tracker is then stopped and the previous frame along with its
root tip object is stored and marked as the safe frame, so that
this frame can be used to check subsequent frames until the
root tip becomes visible again. Once a safe or reliable frame
is marked, then for each new frame, the distance between RT
vectors at each projection between current frame and marked
frame are denoted as DRT

s,0 and DRT
s,90. To detect a valid frame

after the perturbation, |DRT
i,0 − DRT

s,0| and |DRT
i,90 − DRT

s,90| are
compared to a threshold, and if both are smaller, then tracking
is reinitialized using the AIR module.
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2.3. rKLT Tracking With MSAC Outlier Filtering

After the initial BB is determined by the AIR module, rKLT
tracking is initialized using the features within the selected
BB extracted by Shi-Tomasi feature detector. For each frame,
rKLT tracks the points from the previous frame to the cur-
rent frame by using the given FBE threshold. The old in-
liers are updated from previous feature points with the new
inliers selected by rKLT. A similarity transformation between
the old and new inliers is estimated using a variation of Ran-
dom sample consensus (RANSAC); M-estimator sample con-
sensus (MSAC) [20]. MSAC gives a value to the inliers with
respect to how well they fit, in addition to giving a penalty to
outliers when calculating the cost function.

A maximum distance threshold is used in transformation
estimation, to find the number of inliers with best fit, where
the error measure is the distance between a feature point pi
and the back transformation p′i of the corresponding trans-
formed point T (pi). In order to estimate a similarity transfor-
mation, the inliers must consist at least 2 points. If the num-
ber of inliers is smaller than 2, the AIR module is used. The
control of the rKLT tracker’s state is determined by the AIF
module. The centroids of BBs are used to estimate velocity
based on displacement along the x-axis.

3. EXPERIMENTAL RESULTS

RTip was tested on two root sequences, in which seedlings
are grown on square plastic plates containing a transparent
substrate allowing roots to be imaged using transmitted light.
The plate was placed on the stage of a horizontal, compound
microscope and imaged through a 10× objective with a spa-
tial resolution of 2.5 microns per pixel, and frame size of
2048×2448 pixels [6]. The interval between frames is 30 sec-
onds with a total imaging time of 40 minutes for an 80 frame
video. After imaging starts, during a perturbation, the plant
is removed from the microscope to cut off the plant shoot in
order to investigate its effect on root growth, then the root
is placed back under the microscope. Images were acquired
continuously even while the plant was being manipulated out-
side the field-of-view in order to have an accurate time base.
Consequently there will be several frames without the root
tip being visible and sometimes the root tip is not re-placed
properly. RTip identifies and skips past perturbation activ-
ity to automatically track root tips and quantitatively measure
kinematic behavior.

The threshold for the RT distance comparisons is selected
as 4 pixels for each sequence, and maximum number of pixel
distances for the FBE used in rKLT is 2 pixels. In the sim-
ilarity transformation estimation, the threshold of maximum
distance for MSAC is set to 2 pixels. A quality level thresh-
old of at least 0.01 for the Shi-Tomasi feature detector was
used. RTip is tested on the timelapse videos in automated
mode. Some intermediate results of the RTip tracker with

velocity estimations are shown in the Fig. 2. Six other well-
known trackers were also tested on the same sequences in-
cluding top performing CSRT [9] and SiamDW deep learning
tracker with pre-trained weights [10]. Other trackers tested in-
clude KCF [11], Median Flow [17], Multiple Instance Learn-
ing (MIL) [21] and TLD [12]. For these six trackers, the BB
was manually reinitialized after a perturbation occurred.

Due to the deformable nature of the root tip, it is diffi-
cult to create a precise ground truth using manually drawn
BBs in every frame [22]. So the ground truth BBs for both
test sequences were drawn using linear interpolation between
selected key frames. The reference or key frames were fre-
quently updated to minimize the growth rate change in the in-
terpolated intervening BBs. There is some noise in the ground
truth since the root tip growth rate is not constant and the ref-
erence boxes are drawn manually. Reference BBs are drawn
in the first frame and each 5th frame before perturbation with
linearly interpolated BBs using these key frames. Similarly, a
new initialization BB is drawn in the frame after perturbation
and each 5th frame until the end of the sequence, with the
BBs in-between estimated using linear interpolation.

Several different metrics are used to evaluate tracker per-
formance (see Table 1). First, Velocity Estimation Error
(Verr), is the average of all distances between the algorithm
estimated velocity or pixel displacement and the velocity
of the manual ground truth in each frame (i.e. centroid loca-
tions). The mean and standard deviation of the error distances
for each method is shown in Table 1. Second, the gray level
Root Mean Squared Error (RMSE) is used to measure the
intensity differences between the initial root tip template and
tracked BBs, is defined as,

RMSE =

[
1

n

n∑
i=1

∑
x∈BB

(ci(x)− t(x))2
]1/2

(3)

with, ci(x) = Ii(x +Δx), t(x) = I0(x) (4)

where Ii is the ith frame and I0 is Frame 0 containing the
template of the root tip. Finally, the average Structural Sim-
ilarity Index (SSIM) over all BBs is used to measure the BB
similarity compared to the ground truth for each tracker in-
corporating luminance, contrast and structure information,

SSIM =
1

n

n∑
i=1

(2μciμt + s1)(2σcit + s2)

(μ2
ci + μ2

t + s1)(σ2
ci + σ2

t + s2)
(5)

where μci and μt are the mean intensities within the corre-
sponding BBs, σci and σt the corresponding BB intensity
variances and σcit the covariance between BB pixel intensi-
ties, and s1, s2 are two constants used for numerical stability.

The measurements of RMSE and SSIM are averaged over
all the images from both timelapse videos, and the mean and
standard deviation values are given in Table 1. Ground truth
values (first row) are also included in the table since the root
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tip structures have deformable motion. Tracker quality eval-
uated using RMSE and SSIM, together with the adaptability
of each method to the perturbations are shown in Table 1.

Tracker Verr RMSE SSIM Adapt
GT NA 6.23±1.68 0.81±0.05 NA

RTip 0.49±0.34 6.37±1.58 0.80±0.05 �
MIL 0.56±0.61 6.41±1.90 0.80±0.06 ×

MedFl 0.57±0.48 6.35±1.88 0.80±0.05 ×
KCF 0.97±1.17 8.55±1.41 0.69±0.05 ×
Siam 1.92±1.72 8.94±1.61 0.68±0.05 ×
CSRT 2.64±2.66 8.04±1.87 0.71±0.07 ×
TLD 13.01±30.09 10.23±1.78 0.68±0.05 ×

Table 1. Experiment results for Verr averaged over all frames
from both sequences S1 and S2. Mean and standard devia-
tion of root tip velocity errors are in pixels per frame, RMSE
(lower is better) and SSIM (higher is better) values with cor-
responding standard deviations (lower is better). Adaptability
of tracker due to a perturbation (Col 5).

4. DISCUSSION

A comparison of velocity estimates Verr shows that RTip
gives the highest accuracy results with the lowest mean error
and standard deviation using the BB centroids. Evaluation
using RMSE and SSIM show that, RTip has a small error
with a small standard deviation in RMSE, and a high simi-
larity value with a small standard deviation in SSIM, close
to the ground truth. MIL and MedianFlow also have close
mean values to RTip, but the standard deviations, i.e. jitter in
the localizations, are higher than RTip. Other tested trackers
have higher errors with lower similarity values. Therefore,
KCF, SiamDW, CSRT and TLD do not perform well in such
root tip image sequences. Moreover, none of the other tested
trackers could adapt automatically to the perturbation activ-
ity in the videos, requiring a manual stop and restart with a
manual reinitialization after the perturbation. RTip success-
fully detected the perturbations and automatically recovered
from the episodic activity, without any manual intervention.
Hence, RTip is effective for high-throughput phenotyping and
screening studies of root tip kinematics.

5. CONCLUSIONS

The proposed RTip tracker uses the Radon transform for oc-
clusion handling, and robust KLT (rKLT) feature matching
to handle deformable tissue structures and outliers, provid-
ing accurate bounding boxes and subpixel motion estimates
of the root tip with smooth trajectories. Jitter in the posi-
tion or shape of the bounding box from KLT is minimized
using the Forward-Backward Error (FBE) combined with us-
ing a robust M-estimator Sample Consensus (MSAC) method
for rejecting outliers in the rKLT matches during similarity
transformation estimation. Manual interaction is not needed

(S1) 000 (V) 016 (P) 019 (P) 020 (V)

(S2) 000 (V) 019 (P) 021 (P) 022 (V)

Velocity of S1 Velocity of S2

Fig. 2. RTip results for root sequences S1 and S2 shown in
Rows 1 and 3 with corresponding RTs for each frame in Rows
2 and 4. Frames are marked as Valid (V) and Perturbed (P).
Row 5 shows the root tip velocity vs frame number (time).

to recover from episodic perturbations when the root is re-
moved from the imaging station for biological manipulation
and then placed back on the microscopy stage, modeled as a
specialized type of occlusion handling or activity detection.

The simplified Radon transform was used to identify the
visibility of the root tip object of interest in the field-of-view,
including filtering frames where the root may be visible but
not the root tip. FBE assists in the robust matching of multiple
bounding boxes near the root tip to recover from perturba-
tions, motion blur, and illumination changes. RTip can be
scaled to high-throughput biological studies with thousands
of motion sequences since RTip can automatically detect
the root tip object without manual interactive bounding box
(re)initialization. RTip outperformed SiamDW, a state-of-the-
art deep learning-based tracking algorithm and winner of the
VOT-2019 RGB-D challenge. Compared to the six trackers
tested, RTip had the lowest average velocity error of less than
0.50 pixel per frame and the lowest variance.
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