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ABSTRACT

This paper presents a new ILP processor architecture called
Compressed VLIW (CVLIW). The CVLIW processor constructs a
sequence of long instructions by removing nearly all NOPs (No
OPecrations) and LNOPs (Long NOPs) from VLIW code. The
CVLIW processor individually schedules each instruction within
long instructions using finctional unit and dynamic scheduler pairs.
Every dynamic scheduler in the CVLIW processor individually checks
for data dependencies and resource collisions while scheduling each
instruction. In this paper, we simulate the architecture and show that the
CVLIW processor performs better than the VLIW processor for a wide
range of cache sizes and across various numerical benchmark

applications. These performance gains of the CVLIW processor result

from individual instruction scheduling and size reduction of object code.

Even though we assume a cache with a zero miss rate, the CVLIW’s
performance is still 9%~15% higher than that of the VLIW processor
regardless of benchmark applications.
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1. INTRODUCTION

An important focus of activity regarding computer architecture
in recent years has been the exploitation of Instruction Level
Parallelism (ILP), that is, the ability to execute several
operations simulianeously. Processors which are capable of
exploiting ILP contain multiple functional units, fetch several
instructions per cycle from the instruction cache, and in a given
cycle may dispatch multiple operations for execution [3). Such
processors are referred to as a superscalar processor and a Very
Long Instruction Word (VLIW) processor.

The superscalar processor executes all parallel processing steps directly
in hardware at nn-time [5]. Therefore, the superscalar processor uses
complex hardware units and the object code is simply the same as
sequential code. Due to the unbalanced optimization between compile-
time and nmn-time parallelization, the superscalar processors typically
have a performance bottleneck from excessive run-time overhead. On
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the other hand, the VLIW processor constructs a parallelized long
instruction sequence at compile-time [1,8]. Therefore, the VLIW
processor can be implemented using simple hardware units, but object
cade is more complex since it contains groups of long instructions each
of which is composed of a number of instructions. The VLIW processor
has performance bottlenecks due to the unoptimized large object code
and compulsory instruction scheduling [2,6,7].

To balance a load between compile-time and run-time on the
above processors, Superscalar VLIW (SVLIW) processor
architecture has been studied. The SVLIW processor executes
object code acquired by removing LNOPs (Long NOPs) from the
VLIW code, where the LNOP equals a long instruction that is
composed of only NOPs (No OPerations) [6). The SVLIW processor
schedules the next long instruction after checking out data
dependencies and resource collisions with the scheduled long
instruction in advance. When any collision occurs, the SVLIW
processor generates LNOPs automatically until all collisions are
removed. However, despite the merits, the SVLIW processor has a
performance limit the same as the -VLIW processor because the
SVLIW processor can’t execute the next long instruction until all
instructions within the scheduled long instruction are executed. To
solve the performance limit problem, a processor architecture that
satisfies the following criteria is required: (1) load balance between
compile-time and nm-time parallelization, (2) individual instruction
scheduling, and (3) reducing the size of object code [2].

This paper presents a new ILP processor architecture called a
Compressed VLIW (CVLIW) processor architecture that achieves
these goals. The CVLIW processor individually schedules each
instruction in long instructions constructed by removing LNOPs and
NOPs from the VLIW code. To schedule each instruction
independently, the CVLIW processor has a number of functional unit
and individual scheduler pairs. Every scheduler individually decides
to issue the next instruction to the associated functional unit, or to stall
the functional unit for the next pipeline cycle due to possible resource
collisions or data dependencies. Such features can reduce execution
cycles of the CVLIW processor better than those of the VLIW or the
SVLIW processor that has to schedule long instructions compulsorily.
Even though the superscalar processor is an effective way of
exploiting ILP, this architecture requires complex devices and the
impact of such complexity on the design cost and clock cycle time
can be severe [7]. Consequently, the superscalar processor will not be
evaluated in this paper We believe that the CVLIW processor is
simpler and more cost effective than the superscalar processor. The
reason is that the CVLIW processor requires simple hardware units to
schedule instructions due to nearly parallelized object code
constructed from the VLIW code.

The rest of the paper is organized as the follows. Section 2
compares various ILP processors and Section 3 introduces the
CVLIW processor architecture and instruction pipeline algorithm,
and we evaluate a performance of the CVLIW processor in Section
4. The conclusion follows in Section 5.



2. INSTRUCTION LEVEL PARALLELISM

Figure 1 shows issue slots and execution images of the VLIW, the
SVLIW, and the CVLIW processors that execute their own object code
generated from given instruction graph. In the instruction graph, a node
represents an instruction and a directed edge is annotated with data
dependencies and resource collisions among instructions. We assume
that every processor has three untyped functional units that can execute
any instruction and a long instruction is composed of three instructions.
Figure 1(a-1), (2-2), and (a-3) illustrate issue slots of each object code
using rectangles repeated in the horizontal direction to represent
consecutive clock cycles. Squares placed vertically in each rectangle
represent the per cycle utilization instruction issue slots, where a
rectangle and a square individually mean a long instruction and an
instruction. Every instruction is executed in the following four stages: F
(Fetch), D (Decode), EX (EXecute), and WB (Write Back).

Figure 1(b-1) shows an execution image for the VLIW processor that
executes VLIW code. The VLIW code contains a number of LNOPs
and NOPs 1o solve data dependencies and resource collisions between
long instructions as shown in Figure 1(a-1). The VLIW processor daes
not allow the next long instruction to enter into the execution stage until
functional umits have finished executing all instructions within the
scheduled long instruction.

Figure 1(b-2) shows an execution image for the SVLIW processor
executing SVLIW code. The SVLIW code is constructed by

removing all LNOPs from the VLIW code as shown in Figure 1(a-
2). In order to execute the SVLIW code, the SVLIW processor
schedules the next long instruction after checking for data
dependencies and resource collisions with the scheduled long
instructions in advance. When a collision occurs, the processor is
stalled as indicated by dash (-) in Figure 1(b-2) until all collisions
are resolved. The SVLIW processor uses the same scheduling
strategies used for the VLIW processor. In Figure 1(b-1) and 1(b-
3), The VLIW and SVLIW processors equally requirel 12 cycles
for execution in this experiment.

Figure 1(b-3) shows an execution image for the CVLIW processor
proposed in this research. Since instructions within a long
instruction may depend on each other as shown in Figure 1(a-3), we
assume that each instruction contains dependency information among
instructions in order to admit synchronization. The CVLIW processor
issues one long instruction per cycle and individually executes each
instruction using dependency information contained within the
instruction. As shown in the shaded pipelines in Figure 1(c-3),
instructions I, I, and L, are simultaneously executed during the 6® cycle
although the instructions are individually fetched on different clock
cycle. The CVLIW processor requires 10 cycles for execution.

This simple example demonstrates the process by which the CVLIW
processor can achieve better performance in comparison to the VLIW or
the SVLIW processor. The main insight is that in the CVLIW

Clock Cycles
1% ard s it |“' instruction D NOP LNOP
Instruction graph (a-1) VLIW (a-2) SVLIW (a-3) CVLIW
Chxk  Cycles
Il1‘|!l T .,R 9 Iq ez IIlIl.! & 7T = 3= m iz 1 1

Iv| F ] D [EXIEX}VB Il F D.ExJB( B I |F|D
vor | F | D |[EX|WB wor | F | D JEXjVE u|F]D
xop | F ) D JEXWE nor | F | D [EX VB I {F|D
NOP F | D |[EXWR I FID]- Iexwn Is F
wor FDBIEE‘ Is FIp]- |oi]ex|oijve Le F
wor F | p [Exjve noF F | D exve 1 n F

' F Db B a e

wl | olodelobe v | CBET ek
wor F | D [ExjwB nor F | D [exjwe
No¥ F | D |exjws Is Flp]- |- B [Ex B
nor F | D e e now F | D JEx|we
) F | D [Exjwe NoF F | D [exjwe
NOP F | D |[EXWB
oy F | b [exjwBl
Nop F | D |EXWB

L F | D |exje

I F | D [ex|ex we
Nor F | Dp|otjwa
Nor F | D [ExjvB
Now F | D |exjwn
NOP F | D|EXWB

u F | » Jex]exws
vor F [ D [Ex|wB
~op F | D [Ex|wB
wap F | D |EXWB
NOP F | D |[EXWB
noF I F | n|exjwe

(b-1) VLIW (b-2) SVLIW (b-3) CVLIW

Figure 1. Comparison of Issue slots and execution images
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processor each instruction within a given long instruction is
independently processed. Therefore, it decreases the waiting time
to process a given set of long instructions, however, the VLIW
and the SVLIW processors schedule each long instruction
according to fetched order of long instructions.

3. CVLIW PROCESSOR MODEL

3.1 long Instruction Format

To work every functional unit individually, the CVLIW processor
needs object code including dependent information that express
dependent relations among instructions.

Figure 2 shows CVLIW code structure composed of m long
instructions. A long instruction has » instructions that may depend on
each other due to data dependencies or resource collisions. Each
instruction format consists of pre-dependency Pre g, an instruction 1
and post-dependency Posty, The Pres, provides information about
functional units executing previous instructions that have
dependencies with the instruction /; J; refers to the j* (j=I...n)
instruction contained within the i (i=J....m) long instruction. The
Postap provides information about functional units that will execute
following instructions that depend on the instruction Jj.

Figure 2. CVLIW long instruction format

To store the dependency relations between the I; and other
instructions, the Prex, and the Post,, of I are individually composed
of a bit vector that has (n-1) bits, where n equals the number of
functional units. To store the information in the bit vector, the
compiler allocates one bit per each functional unit within the bit
vector. The bit corresponding to the functional unit F; that will execute
I; is omitted in the bit vector, since there is no need for the F; to store
information about itself (as Figure 2). If J; depends on a previous
instruction J; being executed by functional unit F;_the bit designating
Fy in the Preg, is set to 1. Otherwise, it is set to zero. Although
CVLIW code contains dependency information composed of many
bits, the CVLIW processor can still achieve a reduction in object code
size in comparison to the VLIW processor [7].

005,11 105,10 101,00

10,01 005,00 1000

The CVLIW code shown in the above is generated from the
instruction graph of Figure 1. A long instruction consists of three
instructions. From this CVLIW code, we know that instruction I,
within the 1 long instruction depends on previous instruction I,
executed by the 1* functional unit since the first bit in the Pre, is st
to 1. We also know that 1, also has dependent relations with following
instruction I; executed by the 1* functional unit because first bit in the
Pafl@, issetto 1.

3.2 Processor Architecture

To schedule each instruction in CVLIW code independently, the
CVLIW processor must be able to synchronize instructions and to
check data dependencies and resource collisions among instructions
using dependency information contained within each instruction.
Figure 3(a) shows a block diagram of the CVLIW processor
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architecture. The CVLIW processor has a number of FU
(Functional Unit) and DS (Dynamic Scheduler) pairs, a number of
IQs (Instruction Queues) and DCs (Dependency Counters),
register file, instruction cache, data cache, and BTB (Branch
Target Buffer). Each IQ stores an instruction (separated into a
long instruction) in its own tail, and provides an instruction stored
in its own head to the associated DS. Each DC is necessary to check
Preg, of the next instruction, which will be executed by the associated
FU, using Posts, of executed instructions in order to achieve
synchronization. To accomplish this, each DC, a 32 bit register, is
composed of -1 counters. Each counter is associated with one FU
and counts the number of previously executed instructions the FU
depends on. Since there is no need for an FU to count its own
instructions, there is no counter for the associated FU in the DC.
Using the DC, each DS individually decides whether to assign the
next instruction to the associated functional unit, or to stall the
functional unit. The processor also utilizes the BTB structure for
branch prediction.

3.3 Instruction Pipeline Algorithm

In the CVLIW processor, every instruction is classified as ALU
(Arithmetic Logic Unit), LD/ST (LoaD/STore), or BR/BC
(BRanch unconditional/Branch Conditional) type instruction.
Every instruction is executed in four stages as shown in Figure
3(b). Each stage requires only one cycle except the execution
stage that requires various execution cycles according to an
instruction.

Instruction Cache
PC a5 [ —
Instruction Fetch Unit ALY typr Imtraction
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Figure 3. The CVLIW processor architecture

In the Fetch (F) stage, the fetch unit gets one long instruction from
the instruction cache each clock cycle and separates it into
instructions to store in the tails of the IQs. If IQ is in the full state,
the fetch unit cannot fetch the following long instruction, which
prevents the 1Q from overflowing.

In the Decode/Address Generation (D/AG) stage, the decode unit
analyzes the next instructions located at the head of each 1Q. Every
DS simultaneously checks for data dependencies and resource
collisions using both Pre,, in the next instruction and counter values
in the associated DC. If any bit in Prey, is set to 1, DS checks the
counter in the corresponding location in the associated DC. If the
counter is 0, it means that the execution of previous dependent
instruction hasn’t finished. Otherwise, the execution of previous
dependent instruction has finished. After the DS confirms that the
exccution of all previous dependent instructions is finished, the DS
decrements the counter values in corresponding location in its DC



using the set bits in Pre g, of the next instruction. It is necessary in
order to clear the Post,, of the previous instructions.
Simultaneously, the DS assigns the next instruction to the
associated FU. .

In the Execute (EX) stage, every FU executes instructions and
simultaneously announces that its execution is finished using Post., of
its currently executing instruction. That is, in the case of floating-point
instructions requiring multi-cycles, the FU announces its execution is
finished during the execution of the final cycle. To accomplish this, the
FU increments counters (indicating the FU) in DCs in corresponding
location using set bits in the Posta,. To facilitate this, we designed the
EX stage with the ability to control the D/AG stage. Finally, in the Write
Back (WB) stage, the results of the executed instructions are stored in
the register file. In the case of a branch instruction, the processor decides
whether or not to branch using information included in the BTB. If a
branch occurs, the results of the consecutively executed instructions are
kept in lemporary storage until the branch is proven to be correct. If the
branch prediction is comect, then the values in temporary storage are
restored to the register file. Otherwise, the values are discarded.
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Figure 4. Example of instruction execution steps

Flgure 4 shows execution steps of the CVLIW code fragment shown
in Section 3.1, where FU; corresponds to the i functional unit. As
an example, FU, first executes instruction I, since the Prey., of Ij
is 00. Simultaneously, FU, increments the first counters(indicating
FU,) in the DCs of FU, and FUj, because the Posty., of Ip is 11. In
Figure 4(b), FU, and FU; individually check their Preg,, bits of the
next instruction and the counter values in the associated DC. If
both of them are greater than 0, FU, and FU; decrement the first
counter in its DC because Pre,., of I; and I; are 10. This is
required in order to clear the Posty, of I, Then, FU, and FU,
simultaneously begin the execution of /; and I,.

4. PERFORMANCE EVALUATION

4.1 Simulation System

The performance of the CVLIW processor was accurately analyzed
using a simulator testbed. We measured the total number of execution
cycles for various numerical benchmark applications on the VLIW, the
SVLIW, the CVLIW processor architectures.

The simulator starts with the MIPS assembler, a Mipspro C+- compiler
using optimization flag —O and assembly code generation flag —S,
generating MIPS R4000 assembly code by compiling a C-language
benchmark applications [4]. Next, the macro expander inputs the MIPS
R4000 assembly code while simultaneously expanding macros. The
Macro expander then passes the assembly code to each parallelizer.
Three parallelizers, each of which is associated \nm:hamuquepmcmsor
are designed with the ability to exploit ILP across basic blocks using
compile techniques such as register renaming, branch prediction,
invariant code motion from loops, common subexpression elimination,
function inlining, and loop unrolling, In the diagram, VLIW7, VLIW,
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and VLIW: comrespond to VLIW, SVLIW, and CVLIW code,

respectively. The parallelizers then use the MIPS code to generate

parallelized code for its processor simulator and then translate this

parallelized code into object code.

The simulators receive the object code and then calculate the total number
of execution cycles required for execution. We can then compute
performance by comparing the three processors’ total number of execution
cycles. For these experiments, processor speedups arc calculated by
dividing the total number of execution cycles of the VLIW processor by
the total number of cycles of the CVLIW or the SVLIW processor. We
assume input parameters which appreciate their influence on the
simulation performance as the follows: each processor simulator has four
functional units composed of two mteger units and two floating-point units,
the cache replacement is LRU (Least Recently Used), and memory
reference latency is four cycles when cache miss occurs.

Table 1. Benchmark applications

Benchmarks I/F (%) VLIW | VLIW g |VLIW .
LIVERMORE 65.3/34.7 1 0.723 0.725
MM 6B.4/31.6 1 0.568 0.591
WHETSTONE 65.6/34.4 1 0438 0.385
FFT 43.3/56.7 1 0.385 0.400

Table 1 provides proportions of I/F (Integer instructions and
Floating-point instructions) in benchmark programs used in this
research. We choose benchmark programs that have a high
proportion of floating-point instructions. This choice was
appropriate because the CVLIW processor is more effective given
individual instruction scheduling and reduced object code size. These
applications all use double precision. Table 1 also tabulates the
ratios of object code size of the VLIW to both the SVLIW and
CVLIW processors. Even though VLIW contains many bits of
dependency information, VLIW: averages 45% smaller than
VLIWrand is almost the same size as VLIW;.

4.2 Experimental Results

In this section, we present and discuss the experiments carried out to
evaluate the performance of the CVLIW processor. We start by
examining the effects of scheduling strategies and cache size on the
CVLIW, the SVLIW, and the VLIW processors.

4.2.1. Effect of scheduling strategies

Figure 5 shows the speedup of the CVLIW over the VLIW (or the
SVLIW) processor using different scheduling strategies. In order to
evaluate scheduling performance only, we ignore cache effects such
as cache miss rates and instruction fetch cycles. We assume that an
instruction cache size is perfect (no miss penalty). Therefore, there is
no instruction that occurs cache miss penalty. In this experiment, we
reduced the number of loop iterations in each benchmark application
in order to reduce simulation duration.

Figure 5 illustrates that even though we assume a cache with a zero
miss rate, the CVLIW's performance is still 9%-15% higher than that
of the VLIW processor regardless of benchmark application. We have
the CVLIW’s scheduling to thank for this speedup. This individual
scheduling decreases the waiting time to process a set of long
instructions when compared to the VLIW and SVLIW processors. By
contrast, the VLIW and the SVLIW processor can’t execute pending
long instructions until the execution of all instructions in previous
long instruction finishes. Besides, in simulation environment of
Figure 5, the SVLIW processor shows same performance in
comparison to the VLIW processor.
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4.2.1. Effect of Cache Size

Figure 6 illustrates the impact of cache size on speedup of the CVLIW
processor with respect to both the SVLIW and VLIW processors. We
varied the instruction cache size from 4k bytes to 32k bytes to compare
performance according to changes in cache size. The speedups of the
CVLIW and the SVLIW processors were measured relative to the
VLIW processor regardless of cache size. In this experiment, we
reduced the number of loop iterations in each benchmark application in
order to reduce simulation duration.

These results indicate that the CVLIW processor is faster than the
SVLIW processor regardless of both benchmark applications and cache
size. This is due to the CVLIW’s scheduling strategies. Another factor is
the CVLIW’s reduced object code size, which decreases average fetch
cycles and also reduces cache misses. But cache size does play a role in
performance djfference. Figure 6 indicates that larger cache sizes result
in smaller speedup differences between the VLIW and CVLIW
processors. At smaller cache sizes, the VLIW’s performance is slower
due to higher cache miss rates Unlike the VLIW, the CVLIW’s
performance is not as sensitive to cache size due to its smaller object code.
But as cache size increases, performance difference decreases and the
VLIW’s performance approaches that of the CVLIW. Yet, even assurmning
perfect cache, the CVLIW is still faster than the VLIW’s because of its
individual scheduling strategy.
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Figure 6. Speedup according to changes in cache size

Overall, we attribute thess CVLIW’s performance gains to the
balanced benefits of compile-time and run-time parallelization,
individual instruction scheduling, and size reduction of object
code as previously described.
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5. CONCLUSION

This paper describes a new ILP processor architecture referred
to as Compressed VLIW (CVLIW). The proposed CVLIW
processor is a hybrid architecture that has inherited features as
ILP exploitation at compile-time of the VLIW processor and
individual instruction scheduling at run-time of the superscalar
processor. The CVLIW processor can individually schedule each
instruction using dependency information contained within the
CVLIW code. To schedule each instruction independently, the
CVLIW processor has a number of functional unit and
individual scheduler pairs. In this paper, the experimental
evaluations have shown that the CVLIW processor achicves a
high speedup over the VLIW and the SVLIW processors for a
wide range of cache sizes and across various numerical
benchmarks. The performance gains result from individual
instruction scheduling and size reduction of object code. Even
though we assume a cache with a zero miss rate, the CVLIW’s
performance is still 9%-15% higher than that of the VLIW
processor regardless of benchmark application.

The CVLIW processor architecture opens several new avenues
of research. Optimization of dependency information within
object code, CVLIW compilers, and scalability of functional
units in the system are just a few examples that will be
investigated in future work. Particularly, our research will focus
on optimization and management of the dependency information
required to achieve synchronization.
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