
Performance Evaluation For a Compressed-VLIW Processor
Sunghyun Jee

Chonan College in Foreign Studies
Department of Computer Information

393Anseo Dong, Cheonan, Chungcheong Namdo
South Korea, 330-705
iees~.missouri.edu

Kannappan Palaniappan
University of Missouri

Multimedia Communications and Vksualization Lab
Deparlment of Computer Science & Computer Engineering

University of Missoun, Columbia, MO 65211-2060
palani@.cecs.missouri.edu

ABSTRACT
This paper presents a new ILP processor architecture called
Compressed VLIW (CVLIW). The CVLIW processor constructs a
sequence of long instructions by removing nearly all NOPs (No
OPerations) and LNOPs (Long NOPs) from VLIW code. The
CVLIW processor individually schedules each instruction within
long inamctions using fonctional unit and dynamic scheduler palm
Every dynamic scheduler in the CVLIW processor individually checks
for data dependencies and resource collisions while scheduling each
insu'uction. In this paper, we simulate the architecture and show that the
CVLIW processor performs better than the VLIW prueesser for a wide
range of cache sizes and re:ross various numerical benchmark
applications. These performance gains of the CVLIW processor n~,dt
from individual inslruction scheduling and size reduction of object code.
Even though we assume a cache with a zero miss rate, the CVLIW's
performance is still 9%--15% higher than that o f the VLIW processor
regardless of benchmark applications.

Keywords
ILP, VLIW, CVLIW processor, Individual Instruction Scheduling

1. INTRODUCTION
An important focus of activity regarding computer architecture
in recent years has been the exploitation of Instruction Level
Parallelism (ILP), that is, the ability to execute several
operations simultaneously. Processors which are capable of
exploiting ILP contain multiple functional units, fetch several
instructions per cycle from the instruction cache, and in a given
cycle may dispatch multiple operations for execution [3]. Such
processors are referred to as a superscalar processor and a Very
Long Instruction Word (VLIW) processor.
The supmscalar processor executes all paralJei processing steps directly
in hardware at ran-lime [5]. Tbemfore, the s u p a s a g ~ processor uses
complex b.m~ware units end the object code is simply the same as
sequential code. Due to the unbalanced optimization between compile-
time and rim.time parallclizagon, the ~ ~ z s typically
havc a perform~ce bottleneck from excessive mmtime overhead. On

Copyright 2002 Association for Computing Machinery. ACM
acknowledges that this contribution was authored or co-authared
by a contractor or affiliate o f the U.S. Government. As such, the
Government retains a nonexclusive, royalty-free fight to publish or
reproduce this article, or to allow others to do so, for Government
purposes only.
SAC "02, Madrid, Spain
Copyright 2002 ACM ! -58113-445-2/02/03...$5.00

the other hand, the VLIW processor ¢onmucts a pmallelized long
instruction sequence at compile-time [1,8]. Tberefor~ the VLIW
processor can be implemented using simple hardware units, but object
code is more complex since it conlains groups of long instructions each
of which is composed of a number of insmu~on~ The VLIW processor
has performance bottlenecks due to the unoplimized Imge object code
and compulso D, instruction scheduling [2,6,7].
To balance a load between compile-time and run-time on the
above processors, 3uperscalar VLIW (SVLIW) processor
architecture has been studied. The SVLIW processor executes
object code acquired by removing LNOPs (Long NOPs) fi'om the
VLIW code, where the LNOP equals a long inslmclion that is
composed of only NOPs (No OPerations) [6]. The SVLIW processor
schedules the next long instruction after checking out data
dependencies and resource collisions with the scheduled long
instruction in advance. When any collision occurs, the SVLIW
processor generates LNOPs antomatically until all collisions are
removed. However, despite the merits, the SVLIW processor has a
performance limit the same as the-VLIW processor because the
SVLIW processor can' t execute the next long inslruetiun until all
inst3"uctinns within the scheduled long inslruction are executed. To
solve the performance limit problem, a processor arc, hiteclta'e thai
satisfies the following criteria is required: (1) load balance between
compile-time and nm-lLme pmallelization, (2) individual inslruedon
scheduling, and 0) reducing the size of object code [2].
This paper presents a new ILP prtw, essor architecture called a
Compressed VLIW (CVLIW) processor architecUa'e that achieves
these goals. The CVLIW processor in~vidually schedules each
ins'inaction in long insh'actinns constructed by removing LNOPs and
NOPs from the VLIW code. To schedule each insU'actiun
independently, the CVLIW processor has a number of functional unit
and individual scheduler palm Every scheduler individually decides
to issue the next instruction to the associated functional unit, or to stall
the functional unit for the next pipeline cycle due to possible resource
collisions or data dependencies. Such features can reduce ex~'ution
cycles of the CVLIW processor better than those of the VLIW or the
SVLIW processor that has to schedale tong instructions compulsorily.
Even though the superscalar processor is an effective way of
exploiting ILP, this architectu~ requires complex devices and the
impact of such complexity on the design cost and clock cycle lime
can be severe [7]. Consequently, the superscala~ processor will not be
evaluated in this paper. We believe that the CVLIW processor is
simpler and more cost effective than the superscalar processor. The
reason is that the CVLIW processor requires simple hardware units to
schedule instructions due to nearly parali¢lized object code
conslructed from the VLIW code.
The rest of the paper is organized as the follows. Section 2
compares various ILP processors and Section 3 inlroduces the
CVLIW processor architecture and instruction pipeline algorithm,
and we evaluale a performance of the CVLIW processor in Section
4. The conclusion follows in Section 5.

913

2. INSI~UCTION 1 ,gVFJ, PARAI J,gl .IN'IM[
Figure 1 shows issue slots and execution images of the VLIW, the
SVLIW, and the C'VLIW processors that execute their own object code
generated from given i n s ~ c ~ o n graph. In the instruction graph, a node
represents m ~ o n and a directed edge is mmota~l with data
dependencies and resotacc collisions among instn.tcfions. We assume
tha~ every processor has three ontyped f u n c d o n a l onits t l ~ can cxccotc
any instruction and a long insmmfion is corrq~osed of three inslnsctior~
Figure l(a-l) , (a-2)~ and (a-3) illustrate issue slots o f each object code
using rectangles repeated in the horizontal direction to ~present
consecutive clock cycle~ Squares placed vertically in each rectangle
represent the per cycle ut/lizalion insm]ction issue slots, where a
rectangle and a square individually mean a long instruction and en
instng~on. Eves3' insln]ction is executed in the following four stages" F
(Fetch)~ D (Decode), EX (EXecute), and WB (Write Back).
Figure l(b-1) shows an execution image for the VLIW processor that
executes VLIW code. The VLIW code contains a number of LNOPs
and NOPs Io solve data dependencies and resource col5sions between
long insmzctions as shown in Figure l(a-l) . The VLIW processor does
not allow the next long instruction to enlcr into the exccutinn stage until
fimctional units have finished executing all ins~ctions within the
~.hakdcd long insu'uction.
Figurc l (b-2) shows an execution image for t h c SVLIW p r o c c s s o r
executing SVLIW code. The SVLIW code is constructed by

removing all LNOPs from the V L I W code as shown in Figure l (a -
2). In order to execute the SVLIW code, the SVLIW processor
schedules the next long ins t~c t ion after checking for data
dependencies and resource collisions with the scheduled long
instructions in advance. When a collision occurs, the processor is
stalled as indicated by dash (-) in Figure l (b-2) until all collisions
are resolved. The SVLIW processor uses the same scheduling
slzategies used for the V L I W processor. In Figure l (b-1) and l (b -
3), The V L I W and SVLIW processors equally require l 12 cycles
for execution in this experiment.
Figure l (b-3) shows an execution image for the C V L I W processor
proposed in this research. Since instructions within a long
inst~ction may depend on each o th~ as shown in Figure l(a-3~ we
assume that each instruction contains dependency information among
~ o n s in orde~ to admit synchm~iTatiorL The CVLIW processor
issues one long instruction per cycle and individually executes each
insmtction using dcDendency information conlained within the
instruction. As shown in the shaded pipelines in Figure 1(c-3~
inst~ctions 12,I~, and I4 me simultaneously executed during the 6 ~ cycle
although the i ns t ruc t i ons are individually fetched on different clock
cycle. The CVLIW processor requires 10 cycles for em~c'ufion.
This simple exarr~le demonstrates the process by which the CVLIW
laeCCSSOr can achieve better pcrfonnmce in c o ~ n to the VLIW or
the SVLIW processor. The main insight is that in the C V L I W

I 2 3 4 S 6 "/

• ~ i let instruct ion

Cleck Cyc lm

la 9

• D N O P

v

z 3 ~ z 2

, Io,lh,, I,,,h, H ~

Ill h,*.,, , , , , , ,

- ~ LNOP

Ins t ruc t ion g r a p h (a - l) V L I W (a - I) S V L I W (a.-3) C V L I W

~ g , 7 r m . u : z . ,1 , , j .
| . I F I D l~ IEx tve i i [[' I

i : . , ~ J
. : : ,~1

~'m' i I F I n l ~ k ~ B I J 1 i i ' ' ,
~ i I v l v l ~ l w e l i [i , h
~ i i F ID l~ lwe i i i i ' . ~

].j F I D I ~ I w e l [i i i ~ z.
": ~ I "

F I D I ID(IWBI : ' ' t~or
~oP r I u IExlwel] :,

F In l~lwel .o,
F D le~ bvel N o ,

v I D leal~el
~m v l D ~lwe]
~ i I v I n IExlwel

, . l IF I o l ~ l w e l
" i I v I n l ~ l ~ i , ' n l

F I D I ~ I w a l [

r,,o,.} Iv I I) I~ iwa i

m~j Iv I D [~X[WOI
.o~j I v I O lexlwul

" ~] I v I D I~IIWBt

F I o I n x l ~ l ~ e l [i
F I D I ~ t , v e l I I I i I I [r :
F I D I ~ t w ' l ,'.: : i ' l

F l o l - l ~ l w ~ l J i [i
r l l) l - I ~ J ~ l ~ l , v n] i i j
F I D I u ~ o I i ! i] i [

Jr DI- l- J- leabvel i
Iv ol- I--I- I~xlExlwel L
IF D I ~

, D -

, , I D l ~ , , I i i i i j
! v l n l ~ W e l j i j i i

'i ' ' : ' ' ' ~ ! j

l, I F I n l - I - l e x i s e l i []
h t r i ~ l I- IEaBIlimilwe] J

['J
" i [FIDI- I- I- i - I ~ e l

(b - l) V L I W (b-2) S V L I W (b-3) C V L I W

F igu re 1. C o m p a r i s o n o f l asue slots and execut ion images

9 1 4

processor each instruction within a given long instruction is
independently processed. Therefore, it decreases the waiting time
to process a given set of long insUructions, however, the V'LIW
and the SVLIW processors schedule each long instruction
according to fetched order of long instructions.

3. C V L I W P R O C E S S O R M O D E L
3.1 long Instruction Format
To work every functional unit individually, the CVLIW processor
needs object code including dependent information that express
dependent relations among instructions.
Figure 2 shows CVLIW code structure composed of m long
inslructions, A long inslraction has n inslructions that may depend on
each other due to data dependencies or resource collisions. Each
inslraction format consists of pre-dependency P r e ~ an inslruction]0,
and post-depeodeocy Postdq~ The Pred~e provides information about
functional units executing previous inslructions that have
dependencies with the instruction I~. //j refers to the j ~ (/=l,..,n)
inslructlon contained within the /k (i=],..,m) long inslruedon. The
Poxtd, p provides information about functional units that will execute
following instructions that depend on the instruction ~.

t / m m m s , m ~ r

~ r I j l . i '
"i ~
-" -,~

F ~

" ,4" ~' l..i o i,ox~ ,~i{;',~, , i o ,) , ,01 ,i , i ol

Fignre 2. CVL]~V long instruction format

To store file dependency relations bccween the I¢ and other
instructions, the Predm and the Postd, p o f ~ are individually composed
of a bit vector that has (n-l) bits, where n equals the number of
functional unit& To store the information in the bit vector, the
compiler allocates one bit per each functional unit within the bit
vector. The bit corresponding to the functional unit Fj that will exe~te
I# is omitted in the bit vector, since there is no need for the Fj to store
information about itself (as Figure 2). I f / i j depends on a previous
inslruction la being executed by functional unit Fk, the bit designating
Fk in the Pred~ is set to 1. Otherwise, it is set to zero. Although
CVLIW code contains dependency information composed of many
bits, the CVLIW precessor can still achieve a reduction in object code
size in comparison to the VLIW processor [7].

001el I 101fl0 101z00

]01j01 0ox~Ax) 101jo0
The CVLIW code shown in the above is generated from the
instruction graph of Figure 1. A long instruction consists of three
instructions. From this CVLIW code, we know that instruction I1
within the 1 'a long inslyuctinn depends on previous instruction Io
executed by the I a functional unit since the first bit in the Pre,~ is set
to 1. We also know thvt lz also has dependent relations with following
inslruction l] executed by the l ' t functional unit because first bit in the
Post~ is set to 1.

3.2 Processor Architecture
To schedule each inslruction in CVLIW code independently, the
CVLIW processor must be able to synchronize inslructions and to
check data dependencies and resource collisions among inslructious
using dependency information contained within each instruction.
Figure 3(a) shows a block diagram o f the CVLIW processor

architecture. The CVLIW processor has a number o f FU
(Functional Uni0 and DS (Dynamic Scheduler) pairs, a number of
IQs (Instruction Queues) and DCs (Dependency Counters),
register file, instruction cache, data cache, and BTB (Branch
Target Buffer). Each IQ stores an instruction (separated into a
long instruction) in its own tail, and provides an instruction stored
in its own head to the associated DS. Each DC is necessary to check
Pre~p of the next inslractlon, which will be executed by the associated
FU, using Postdm of executed inslructions in order to achieve
synchronization. To accomplish this, each DC, a 32 bit register, is
composed of n-I counter~ Each counter is associated with one FU
and counts the number of previously executed inslructions the FU
depends on. Since there is no need for an FU to count its own
inslmctions, there is no counter for the associated FU in the DC.
Using the DC, each DS individually decides whether to assign the
next instruction to the associated functional unit, or to stall the
functional unit. The processor also utilizes the BTB structure for
branch prediction.

3.3 Instruction Pipeline Algorithm
In the CVLIW processor, every instruction is classified as ALU
(Arithmetic Logic Unit), LD/ST (LoaD/STore), or BR/BC
(BRanch unconditinnal/Branch Conditional) type instruction.
Every instruction is executed in four stages as shown in Figure
3(b). Each stage requires only one cycle except the execution
stage that requires various execution cycles according to an
instruction.

, ~ Inslruct/on Cache i

I n . c m ~ e l o n F e t c h U n i t]

D a t a C a c h e I

Reeisler File]
FU : Ftm~eml Utah I l t l : B.mlh U i
]m : Dymmic &Jmlulm BIJ : Br.a~h $dmllal~
[q : la4m, lira q.em I I m a - . ~
IITlll: Bmm~h T m Bmlf~ BC : k ~ . e - - ~ ~

(a) Processor architecture

Im

ALEr 01~ m

I" i' °l "- I-" I
~ / m m m V , m

I , l - o i m i - I

U Q J m I t

I • I-.olo1 I

B/AG: ~ Ad~h~
BI~. I~m FUr.h
WJk ~ B m k

Tml~ ~ F ~

(b) Pipeline stage
Figure 3. The C V L I W processor archi tecture

In the Fetch (F) stage, the fetch unit gets one long instruction from
the instruction cache each clock cycle and separates it into
inslructions to store in the tails o f thc IQs. I f IQ is in the full state,
the fetch unit cannot fetch the following long inslruction, which
prevents the 1Q from overflowing.
In the Decode/Address GeneratLon (D/AG) stage, the decode unit
analyzes the next instructions located at the head of each 1Q. Every
DS simultaneously checks for data dependencies and resource
collisions using both Predm in the next instruction and counter values
in the associated DC. If any bit in Pred~ is set to 1, DS checks the
counter in the corresponding location in the associated DC. If the
counter is 0, it means that the execution of previous dependent
inslzuction ham't finished. Otherwise, the execution of previous
dependent inswuction has finished. ~ the DS confirms that the
execution of all previous dependent iuslructions is finished, the DS
decrements the counter values in corresponding location in its DC

915

using the set bits in P r e ~ o f the next instruction. It is necessary in
order to clear the Posta~v of the previous instructions.
Simultaneously, the DS assigns the next instruction to the
associated FU.
In the Execute (EX) stage, every FU executes inslzuctlons and
simultaneously announces that its execution is finished using Posta~ of
its currently executing instruction_ That is, in the case of floating-point
ins~ctious requiring multi-cycles, the FU announces its execution is
finished during the execution of the final cycle. To accomplish this, the
FU increments counters (indicating the FU) in DCs in com:sponding
location using set bits in the Postal. To facifitate this, we designed the
EX stage with the ability to mnlrol the D/AG stage. Finally, in the Wr~te
Back (WB) stage, the results of the executed instructions are st~red in
the register file. In the case of a branch inslruction, the processor decides
whether or not to branch using information included in the BTB. If a
branch occurs, the results of the consecutively executed insll'uclions are
kept in temporary storage until the branch is proven to be correct. I f the
branch prediction is correct, then the values in temporary sWrage me
restored to the register file. Otherwise, the values are discarded.

I
i ru, D4~(O,e) 001,[__1, IEI IOIjOl[WI

~,! ~ , ~ - ~ -..~
]PlJ z De (I]}D) iOl, to [IN] nOl4OO[]lV]

PlJ] DC(~.O) IOl~O0 I[NV] lOlsO0[~ q

(a)
~- - .~ .~ml~ e ~ g l l ~ = l --)ll)

Fu, n c (o,o)) o [~qll. I~ I

n J , n c (t , o) (~ o o ' ~ n , ~ ' ~ - t T - [

PILl) DC (0~) lOIsOOl'W]

[1 ~ , I ~ (! , o) IOl]OI[W I
. 3(Imri~ e ~ l b t m ~1)

FU z DC (o,0) IO I , /0 [El UOl,OOlWl

FU~ l ~ (0~) ~9.1aeolE] IOIIOO[W]
~ - ~ ~ . ~ m : l --,m}

(b)

t;'LI, DC (0#) [

J FU Z DC (o#)

I;'1.] 3 D(: (@~.,=,.~--]~-I, °° [E(~J m mmmtlm: ie)

(0 (d)
• II1 : l .~mhs Imem,sl~ - [Wl : wd~aE k~nmSm

Figure 4. Example of instruction execution steps

Figure 4 shows execution steps o f the CVLIW code fragment shown
in Section 3.1, where FUi corresponds to the i ~ functional unit. As
an example, FUI first executes instruction Io since the Pred~ o f l a
is 00. Simultaneously, FU] increments the first counters(indicating
FU]) in the DCs of FU2 and FU3, because the POStd~ of l0 is 11. In
Figure 4(b), FU2 and FU3 individually check their Predq~ bits o f the
next instruction and the counter values in the associated DC. I f
both o f them are greater than 0, FU2 and FU3 decrement the first
counter in its DC because Pred~ o f Iz and /2 are I0, This is
required in order to clear the Posta~ of Io. Then, FU2 and FU3
simultaneously begin the execution o f l j and 12.

4. P E R F O R M A N C E EVALUATION
4.1 Simulation System
The pcffmmance of the CVLIW processor was accurately analyzed
using a simulat~ testhed. We measured the total number of execution
cycles for various numerical bend-enark applications on the VLIW, the
SVLIW, the CVLIW processor m~,hi~ecttae~
The simulator starts with the MIPS assembler, a Mipspm C++ compiler
using optimization flag - O and assembly code generation flag -S,
generating MIPS R4000 assembly code by compiling a C-language
benchmark applications [4]. Next, the macro expander inputs the MIPS
R4000 assembly code while simultaneously expanding macros. The
Macro expander then passes the assembly code to each parallelizer.
Three parallelize~, each of which is associated with a tmique ~oceasor,
me designed with the ability to exploit ILP across basic blocks using
compile techniques such as register t~mming~ branch prediction,
invariant code motion from loops, common subexpreasion elimination,
function inlining, and loop unrolling. In the diagram, VL/WT, VLIWs,

and VL/Wc correspond to VLIW, SVLIW, and CVLIW code,
respectively. The parallelizers then use the MIPS code to generate
parallelized code for its processor simulator and then translate this
paralle|ized code into object code.
The simulators receive the object code and then calculme the mud number
of em:L~utlen cycles req~rcd for execution. We can then compute
performance by comparing the three processors" total number of exe~tion
cycles. For these expcxinlents, ~ ~ h l p s are calodated by
dividing the total number of exeo~ion cycles of the VLIW processor by
the total number o f cycles of the CVLIW or the SVLIW processor. We
assume input peramete~ which appreciate their influence on the
simulation performance as the follows: each pmcess~ simulatm" has four
functional units composed of two integer unils and two floating-point units,
the ce~e replamnent is LRU (Least ReumtJy Uscd~ md memory
reference latency is four cycles when cache miss ocoJ~

Table 1. Benchmark applications
Benchmarks

LIVERMORE

MM

WHETSTONE

FFT

I~(%)

65.3/34.?

68.4/31.6

65.6/34.4

43.3/$6.7

VLIW r

1

I

I

!

V L I W s

0 . 7 2 3

0 . $ 6 g

0 . 4 3 8

0 . 3 8 5

VLIW e

0.725

0.591

0.385

0.400

Table 1 provides proportions o f I/F (Integer instructions and
Floating-point instructions) in benchmark programs used in this
research. We choose benchmark programs that have a high
proportion o f floating-point instructions. This choice was
appropriate because the CVLIW processor is more effective given
individual instruction scheduling and reduced object code size. These
applications all use double precision. Table I also tabulates the
ratios o f object code size o f the VLIW to both the SVLIW and
CVLIW processors. Even though VLIW c contains many bits o f
dependency information, VLIWc averages 45% smaller than
VLIWTand is almost the same size as VLIWs.

4.2 Experimental Results
In this section, we present and discuss the experimenls cmried out to
evaluate the performance of the CVLIW processor. We st~t by
examining the effects of scheduling sWategies and cache size on the
CVLIW, the SVLIW, and the VLIW processors.

4. 2.1. Effect of scheduling strategies
Figure $ shows the speedup of the CVLIW over the VLIW (or the
SVLIW) processor using different scheduling slrategies. In order to
evaluate scheduling performance only, we ignore cache effects such
as cache miss rates and insUuction fetch cycles. We assume that an
instruction cache size is perfect (no miss penalty). Tberefore, there is
no ~ o n that occurs cache miss penalty. In this experiment, we
reduced the number o f loop iterations in each benchmark applicaXinn
in order to reduce simulation duration.
Figure 5 illustrates that even though we assume a cache with a zero
miss rate, the CVLIW's performance is still 9%-15% higher titan that
of the VLIW processor regardless of benchmark application. We have
the CVLIW's scheduling to thank for this speedup. This individual
scheduling decreases the waiting time to process a set of long
inslructious when compared to the VLIW and SVLIW processors. By
conwast, the VLIW and the SVLIW processor can't execute pending
long inslructlons until the execution of all insU'uctions in previous
long inslructinn finishes. Besides, in simulation environment o f
Figure 5, the SVLIW processor shows same performance in
comparison to the VLIW processor.

916

1.1~ []]TL'I~VT
m~ LIO

I.O5 or VLI
1.0o
0.9.~ VLI3V c
o.~

LIVERMO~ kgt4 ~-a~blE EFT
Ber, tmad~

Figure S. Speedup according to scheduling strategies

4.2.1. Effect of Cache Size
Figm~ 6 i l l ~ the impact of cache size on speedup of the CVLIW
processor with respect to both the SVLIW and VLIW ~rs. We
v~ied the instruction cache size from 4k bytes to 321(bytes to compare
performance according m changes in cache size. The speedups of the
CVLIW and the SVLIW processors woe measured relative to the
VLIW processor regardless of cache size. In this experiment, we
reduced the number of loop iterations in each benchmark appfication in
order to reduce simulation duration.
These results indicate that the CVLIW processor is faster than the
SVLIW processor regardless of both benchmark epplicatiens and cache
size. This is due to the CVLIW's scheduling swategie~ Another factor is
the CVLIW's nxiuced object code ~ wh. ich decreases average fetch
cycles and also reduces cache misse& But cache size does play a role in
performance di~erence. Figure 6 indicates that large~ cache sizes result
in smaller speedup differences betwem the VLIW and CVLIW
processom At smaller cache sizes, the VLIW's performance is slower
due to higher cache miss rate~ Unlike the VLIW, the CVLIW's
perfonmmce is not as sensitive to cache size due to its smalla- object code.
But as ca~e size inc~ases, perform~ce ~ c e de~:ases and the
VLIW's pcrfonmnce approaches ~ of the CVLIW. Yet, vv~ assuming
perfect cach~ the CVLIW is still fasmr 8ran the VLIW's because of its
h~div~duai sdmdu~ strategy.

1.30 1.20

~ 1.20 I.IO
1.10
1.00 l.OO

0.90 0.90
0.80 O.BO

4k Bk .]6k 32k 4k gk 16k 32k
t.aenl am:e Cache Size

(a) L I V E R M O R E (b) MM

L30 t ~ m~ mJ~ f l 1.40 L20 ~ 1.30 IIVLIW_.s 1.20 T
I.Io 1 .tO II vL~v
1.oo] .00

0.90 0.90 D VI.JW
o .e o O.SO C

4k ek 16k 32k 4k 8k 16k 32k
Cache Size Cache Size

(e) WHETSTONE (d) FFT

Figure 6. Speedup according to changes in cache size

Overall, we attribute these CVLIW's performance gains to the
balanced benefits of compile-time and am-time parallelization,
individual instruction scheduling, and size reduction o f object
code as previously described.

5. CONCLUSION
This paper describes a new ILP processor architecture referred
to as Compressed VLIW (CVLIW). The proposed CVLIW
processor is a hybrid architecture that has inherited features as
ILP exploitation at compile-time of the VLIW processor and
individual instruction scheduling at run-time of the superscalar
processor. The CVLIW processor can individually schedule each
instruction using dependency information contained within the
CVLIW code. To schedule each instruction independently, the
CVLIW processor has a number o f functional unit and
individual scheduler pairs. In this paper, the experimental
evaluations have shown that the CVLIW processor achieves a
high speedup over the VLIW and the SVLIW processors for a
wide range o f cache sizes and across various numerical
benchmarks. The performance gains result from individual
instruction scheduling and size reduction of object code. Even
though we assume a cache with a zero miss rate, the CVLIW's
performance is still 9%-15% higher than that o f the VLIW
processor regardless o f benchmark application.
The CVLIW processor architecture opens several new avenues
o f research. Optimization o f dependency information within
object code, CVLIW compilers, and scalability o f functional
units in the system are just a few examples that will be
investigated in future work. Particularly, our research will focus
on optimization and management of the dependency information
required to achieve synchronization.

6. ACKNOWLEDGMENTS
The first author was supported by a postdoctoral fellowship
program from the Korea Science & Engineering Foundation
(KOSEF). The research was completed using the facilities of the
MCVL at University o f Missouri.

7. REFERENCES
[1] Arthur Abnous and Nader Bagherzadeh, "Pipclining and

bypassing in a VLIW proeessor,"Trans. Para. Dist. Sys., Vol.
5, No. 6, pp. 658-664, June 1994.

[2] Erik R. Altman, R. Govindarajan, and Guang R. Gao, "A
Unified Framework for Instruction Scheduling and Mapping
for FunCtional Units with Structural Hazards, "Journal of Parallel
and Distributed Computing, PP 259-293, 1998.

[3] Ken Sakamure~ '21st-century microprocessors,' IEEE Micro,
July/Aug 2000, pp. 10- ! 1

[4] M]PS R40C0] v ~ ~ Mam.]a], M]PS Compuler S~]=~s,
Inc., 1991.

[5] Pohua P. Chang, Daniel M. Lavtxy, Scott A. Mahlkv, end William
Chore, "The Importance of Prepass Code Scheduling for
SuperscalaF and Superpipelined Pmcesm~" IEEE Transactions
on Computers, Vol. 44, No. 3, March 1995.

[6] Surlghyun Joe and Suldl Kim, "Performance analysis of caching
instructions on SVLIW processor and VLIW processor,"
Journal IEEE Korea Council, Vol. 1, No. 1, December 1997.

[7] Sunghyun Jee and Snkil Kim," A Design o f A Processor
Architecture for Codes With Explict data Dependencies,"
Proc. tenth SIAM Conference on Parallel Proce~ing for Scientific
Coqputing 2001, March 2001.

[8] Thomas M. Cunte and Sumedh W. Sathaye, "Dynamic
Rescheduling: A technique for object code compatibility in
VLIW arcidtecture~" Proc. 28th Inter. @mp. Micro., 1995.

917

