
Performance Evaluation For a Compressed-VLIW Processor 
Sunghyun Jee 

Chonan College in Foreign Studies 
Department of Computer Information 

393Anseo Dong, Cheonan, Chungcheong Namdo 
South Korea, 330-705 
iees~.missouri.edu 

Kannappan Palaniappan 
University of Missouri 

Multimedia Communications and Vksualization Lab 
Deparlment of Computer Science & Computer Engineering 

University of Missoun, Columbia, MO 65211-2060 
palani@.cecs.missouri.edu 

ABSTRACT 
This paper presents a new ILP processor architecture called 
Compressed VLIW (CVLIW). The CVLIW processor constructs a 
sequence of  long instructions by removing nearly all NOPs (No 
OPerations) and LNOPs (Long NOPs) from VLIW code. The 
CVLIW processor individually schedules each instruction within 
long inamctions using fonctional unit and dynamic scheduler palm 
Every dynamic scheduler in the CVLIW processor individually checks 
for data dependencies and resource collisions while scheduling each 
insu'uction. In this paper, we simulate the architecture and show that the 
CVLIW processor performs better than the VLIW prueesser for a wide 
range of cache sizes and re:ross various numerical benchmark 
applications. These performance gains of the CVLIW processor n~,dt 
from individual inslruction scheduling and size reduction of  object code. 
Even though we assume a cache with a zero miss rate, the CVLIW's 
performance is still 9%--15% higher than that o f  the VLIW processor 
regardless of  benchmark applications. 
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1. INTRODUCTION 
An important focus of  activity regarding computer architecture 
in recent years has been the exploitation of  Instruction Level 
Parallelism (ILP), that is, the ability to execute several 
operations simultaneously. Processors which are capable of  
exploiting ILP contain multiple functional units, fetch several 
instructions per cycle from the instruction cache, and in a given 
cycle may dispatch multiple operations for execution [3]. Such 
processors are referred to as a superscalar processor and a Very 
Long Instruction Word (VLIW) processor. 
The supmscalar processor executes all paralJei processing steps directly 
in hardware at ran-lime [5]. Tbemfore, the s u p a s a g ~  processor uses 
complex b.m~ware units end the object code is simply the same as 
sequential code. Due to the unbalanced optimization between compile- 
time and rim.time parallclizagon, the ~ ~ z s  typically 
havc a perform~ce bottleneck from excessive mmtime overhead. On 
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the other hand, the VLIW processor ¢onmucts a pmallelized long 
instruction sequence at compile-time [1,8]. Tberefor~ the VLIW 
processor can be implemented using simple hardware units, but object 
code is more complex since it conlains groups of  long instructions each 
of which is composed of  a number of  insmu~on~ The VLIW processor 
has performance bottlenecks due to the unoplimized Imge object code 
and compulso D, instruction scheduling [2,6,7]. 
To balance a load between compile-time and run-time on the 
above processors, 3uperscalar VLIW (SVLIW) processor 
architecture has been studied. The SVLIW processor executes 
object code acquired by removing LNOPs (Long NOPs) fi'om the 
VLIW code, where the LNOP equals a long inslmclion that is 
composed of only NOPs (No OPerations) [6]. The SVLIW processor 
schedules the next long instruction after checking out data 
dependencies and resource collisions with the scheduled long 
instruction in advance. When any collision occurs, the SVLIW 
processor generates LNOPs antomatically until all collisions are 
removed. However, despite the merits, the SVLIW processor has a 
performance limit the same as the-VLIW processor because the 
SVLIW processor can' t  execute the next long inslruetiun until all 
inst3"uctinns within the scheduled long inslruction are executed. To 
solve the performance limit problem, a processor arc, hiteclta'e thai 
satisfies the following criteria is required: (1) load balance between 
compile-time and nm-lLme pmallelization, (2) individual inslruedon 
scheduling, and 0 )  reducing the size of  object code [2]. 
This paper presents a new ILP prtw, essor architecture called a 
Compressed VLIW (CVLIW) processor architecUa'e that achieves 
these goals. The CVLIW processor in~vidually schedules each 
ins'inaction in long insh'actinns constructed by removing LNOPs and 
NOPs from the VLIW code. To schedule each insU'actiun 
independently, the CVLIW processor has a number of  functional unit 
and individual scheduler palm Every scheduler individually decides 
to issue the next instruction to the associated functional unit, or to stall 
the functional unit for the next pipeline cycle due to possible resource 
collisions or data dependencies. Such features can reduce ex~'ution 
cycles of  the CVLIW processor better than those of  the VLIW or the 
SVLIW processor that has to schedale tong instructions compulsorily. 
Even though the superscalar processor is an effective way of  
exploiting ILP, this architectu~ requires complex devices and the 
impact of  such complexity on the design cost and clock cycle lime 
can be severe [7]. Consequently, the superscala~ processor will not be 
evaluated in this paper. We believe that the CVLIW processor is 
simpler and more cost effective than the superscalar processor. The 
reason is that the CVLIW processor requires simple hardware units to 
schedule instructions due to nearly parali¢lized object code 
conslructed from the VLIW code. 
The rest of  the paper is organized as the follows. Section 2 
compares various ILP processors and Section 3 inlroduces the 
CVLIW processor architecture and instruction pipeline algorithm, 
and we evaluale a performance of  the CVLIW processor in Section 
4. The conclusion follows in Section 5. 
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2. INSI~UCTION 1 ,gVFJ, PARAI J,gl .IN'IM[ 
Figure 1 shows issue slots and execution images of  the VLIW, the 
SVLIW, and the C'VLIW processors that execute their own object code 
generated from given i n s ~ c ~ o n  graph. In the instruction graph, a node 
represents m ~ o n  and a directed edge is mmota~l with data 
dependencies and resotacc collisions among instn.tcfions. We assume 
tha~ every processor has three ontyped f u n c d o n a l  onits t l ~  can cxccotc 
any instruction and a long insmmfion is corrq~osed of  three inslnsctior~ 
Figure l(a-l) ,  (a-2)~ and (a-3) illustrate issue slots o f  each object code 
using rectangles repeated in the horizontal direction to ~present 
consecutive clock cycle~ Squares placed vertically in each rectangle 
represent the per cycle ut/lizalion insm]ction issue slots, where a 
rectangle and a square individually mean a long instruction and en 
instng~on. Eves3' insln]ction is executed in the following four stages" F 
(Fetch)~ D (Decode), EX (EXecute),  and WB (Write Back). 
Figure l(b-1) shows an execution image for the VLIW processor that 
executes VLIW code. The VLIW code contains a number of  LNOPs 
and NOPs Io solve data dependencies and resource col5sions between 
long insmzctions as shown in Figure l(a-l) .  The VLIW processor does 
not allow the next long instruction to enlcr into the exccutinn stage until 
fimctional units have finished executing all ins~ctions within the 
~.hakdcd long insu'uction. 
Figurc l (b-2)  shows an execution image for t h c  SVLIW p r o c c s s o r  
executing SVLIW code. The SVLIW code is constructed by 

removing all LNOPs from the V L I W  code as shown in Figure l (a -  
2). In order to execute the SVLIW code, the SVLIW processor 
schedules the next long ins t~c t ion  after checking for data 
dependencies and resource collisions with the scheduled long 
instructions in advance. When  a collision occurs, the processor  is 
stalled as indicated by dash ( - )  in Figure l (b-2)  until all collisions 
are resolved. The SVLIW processor  uses the same scheduling 
slzategies used for the V L I W  processor. In Figure l (b-1)  and l (b -  
3), The V L I W  and SVLIW processors equally require l  12 cycles 
for execution in this experiment.  
Figure l (b-3)  shows an execution image for the C V L I W  processor  
proposed in this research. Since instructions within a long 
inst~ction may depend on each o th~  as shown in Figure l(a-3~ we 
assume that each instruction contains dependency information among 
~ o n s  in orde~ to admit synchm~iTatiorL The CVLIW processor 
issues one long instruction per cycle and individually executes each 
insmtction using dcDendency information conlained within the 
instruction. As shown in the shaded pipelines in Figure 1(c-3~ 
inst~ctions 12,I~, and I4 me simultaneously executed during the 6 ~ cycle 
although the i ns t ruc t i ons  are individually fetched on different clock 
cycle. The CVLIW processor requires 10 cycles for em~c'ufion. 
This simple exarr~le demonstrates the process by which the CVLIW 
laeCCSSOr can achieve better pcrfonnmce in c o ~ n  to the VLIW or 
the SVLIW processor. The main insight is that in the C V L I W  
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processor each instruction within a given long instruction is 
independently processed. Therefore, it decreases the waiting time 
to process a given set of  long insUructions, however, the V'LIW 
and the SVLIW processors schedule each long instruction 
according to fetched order of  long instructions. 

3. C V L I W  P R O C E S S O R  M O D E L  
3.1 long Instruction Format  
To work every functional unit individually, the CVLIW processor 
needs object code including dependent information that express 
dependent relations among instructions. 
Figure 2 shows CVLIW code structure composed of  m long 
inslructions, A long inslraction has n inslructions that may depend on 
each other due to data dependencies or resource collisions. Each 
inslraction format consists of  pre-dependency P r e ~  an inslruction ]0, 
and post-depeodeocy Postdq~ The Pred~e provides information about 
functional units executing previous inslructions that have 
dependencies with the instruction I~. //j refers to the j ~  (/=l,..,n) 
inslructlon contained within the /k (i=],..,m) long inslruedon. The 
Poxtd, p provides information about functional units that will execute 
following instructions that depend on the instruction ~.  

t / m m m  s , m ~ r  

~ r  I j . . . .  l . i '  
"i ~ 
-" -,~ 

F ~  

" ,4" . . . . . .  ~' l..i o i,ox~ ,~i{;',~, , i o , ) ,  ,01 ,i , i  ol 

Fignre 2. CVL]~V long instruction format 

To store file dependency relations bccween the I¢ and other 
instructions, the Predm and the Postd, p o f ~  are individually composed 
of a bit vector that has (n-l) bits, where n equals the number of  
functional unit& To store the information in the bit vector, the 
compiler allocates one bit per each functional unit within the bit 
vector. The bit corresponding to the functional unit Fj that will exe~te  
I# is omitted in the bit vector, since there is no need for the Fj to store 
information about itself (as Figure 2). I f / i j  depends on a previous 
inslruction la being executed by functional unit Fk, the bit designating 
Fk in the Pred~ is set to 1. Otherwise, it is set to zero. Although 
CVLIW code contains dependency information composed of  many 
bits, the CVLIW precessor can still achieve a reduction in object code 
size in comparison to the VLIW processor [7]. 

001el I 101fl0 101z00 

]01j01 0ox~Ax) 101jo0 
The CVLIW code shown in the above is generated from the 
instruction graph of  Figure 1. A long instruction consists of  three 
instructions. From this CVLIW code, we know that instruction I1 
within the 1 'a long inslyuctinn depends on previous instruction Io 
executed by the I a functional unit since the first bit in the Pre,~ is set 
to 1. We also know thvt lz also has dependent relations with following 
inslruction l] executed by the l ' t  functional unit because first bit in the 
Post~ is set to 1. 

3.2 Processor Architecture 
To schedule each inslruction in CVLIW code independently, the 
CVLIW processor must be able to synchronize inslructions and to 
check data dependencies and resource collisions among inslructious 
using dependency information contained within each instruction. 
Figure 3(a) shows a block diagram o f  the CVLIW processor 

architecture. The CVLIW processor has a number o f  FU 
(Functional Uni0 and DS (Dynamic Scheduler) pairs, a number of  
IQs (Instruction Queues) and DCs (Dependency Counters), 
register file, instruction cache, data cache, and BTB (Branch 
Target Buffer). Each IQ stores an instruction (separated into a 
long instruction) in its own tail, and provides an instruction stored 
in its own head to the associated DS. Each DC is necessary to check 
Pre~p of  the next inslractlon, which will be executed by the associated 
FU, using Postdm of  executed inslructions in order to achieve 
synchronization. To accomplish this, each DC, a 32 bit register, is 
composed of  n-I  counter~ Each counter is associated with one FU 
and counts the number of  previously executed inslructions the FU 
depends on. Since there is no need for an FU to count its own 
inslmctions, there is no counter for the associated FU in the DC. 
Using the DC, each DS individually decides whether to assign the 
next instruction to the associated functional unit, or to stall the 
functional unit. The processor also utilizes the BTB structure for 
branch prediction. 

3.3 Instruction Pipeline Algorithm 
In the CVLIW processor, every instruction is classified as ALU 
(Arithmetic Logic Unit), LD/ST (LoaD/STore), or BR/BC 
(BRanch unconditinnal/Branch Conditional) type instruction. 
Every instruction is executed in four stages as shown in Figure 
3(b). Each stage requires only one cycle except the execution 
stage that requires various execution cycles according to an 
instruction. 
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(a) Processor architecture 

Im 
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I , l - o i m i - I  

U Q J m  I t  
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B/AG: ~ Ad~h~ 
BI~. I~m FUr.h 
WJk ~ B m k  

Tml~ ~ F ~  

(b) Pipeline stage 
Figure  3. The C V L I W  processor  archi tecture 

In the Fetch (F) stage, the fetch unit gets one long instruction from 
the instruction cache each clock cycle and separates it into 
inslructions to store in the tails o f  thc IQs. I f  IQ is in the full state, 
the fetch unit cannot fetch the following long inslruction, which 
prevents the 1Q from overflowing. 
In the Decode/Address GeneratLon (D/AG) stage, the decode unit 
analyzes the next instructions located at the head of  each 1Q. Every 
DS simultaneously checks for data dependencies and resource 
collisions using both Predm in the next instruction and counter values 
in the associated DC. If  any bit in Pred~ is set to 1, DS checks the 
counter in the corresponding location in the associated DC. If  the 
counter is 0, it means that the execution of  previous dependent 
inslzuction ham't  finished. Otherwise, the execution of  previous 
dependent inswuction has finished. ~ the DS confirms that the 
execution of  all previous dependent iuslructions is finished, the DS 
decrements the counter values in corresponding location in its DC 
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using the set bits in P r e ~  o f  the next instruction. It is necessary in 
order to clear the Posta~v of  the previous instructions. 
Simultaneously, the DS assigns the next instruction to the 
associated FU. 
In the Execute (EX) stage, every FU executes inslzuctlons and 
simultaneously announces that its execution is finished using Posta~ of 
its currently executing instruction_ That is, in the case of  floating-point 
ins~ctious requiring multi-cycles, the FU announces its execution is 
finished during the execution of  the final cycle. To accomplish this, the 
FU increments counters (indicating the FU) in DCs in com:sponding 
location using set bits in the Postal. To facifitate this, we designed the 
EX stage with the ability to mnlrol the D/AG stage. Finally, in the Wr~te 
Back (WB) stage, the results of  the executed instructions are st~red in 
the register file. In the case of  a branch inslruction, the processor decides 
whether or not to branch using information included in the BTB. If a 
branch occurs, the results of  the consecutively executed insll'uclions are 
kept in temporary storage until the branch is proven to be correct. I f  the 
branch prediction is correct, then the values in temporary sWrage me 
restored to the register file. Otherwise, the values are discarded. 
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Figure  4. Example  of  instruction execution steps 

Figure 4 shows execution steps o f  the CVLIW code fragment shown 
in Section 3.1, where FUi corresponds to the i ~ functional unit. As 
an example, FUI first executes instruction Io since the Pred~ o f l a  
is 00. Simultaneously, FU] increments the first counters(indicating 
FU]) in the DCs of  FU2 and FU3, because the POStd~ of l0  is 11. In 
Figure 4(b), FU2 and FU3 individually check their Predq~ bits o f  the 
next instruction and the counter values in the associated DC. I f  
both o f  them are greater than 0, FU2 and FU3 decrement the first 
counter in its DC because Pred~ o f  Iz and /2 are I0, This is 
required in order to clear the Posta~ of  Io. Then, FU2 and FU3 
simultaneously begin the execution o f l j  and 12. 

4. P E R F O R M A N C E  EVALUATION 
4.1 Simulation System 
The pcffmmance of  the CVLIW processor was accurately analyzed 
using a simulat~ testhed. We measured the total number of  execution 
cycles for various numerical bend-enark applications on the VLIW, the 
SVLIW, the CVLIW processor m~,hi~ecttae~ 
The simulator starts with the MIPS assembler, a Mipspm C++ compiler 
using optimization flag - O  and assembly code generation flag -S,  
generating MIPS R4000 assembly code by compiling a C-language 
benchmark applications [4]. Next, the macro expander inputs the MIPS 
R4000 assembly code while simultaneously expanding macros. The 
Macro expander then passes the assembly code to each parallelizer. 
Three parallelize~, each of  which is associated with a tmique ~oceasor, 
me designed with the ability to exploit ILP across basic blocks using 
compile techniques such as register t~mming~ branch prediction, 
invariant code motion from loops, common subexpreasion elimination, 
function inlining, and loop unrolling. In the diagram, VL/WT, VLIWs, 

and VL/Wc correspond to VLIW, SVLIW, and CVLIW code, 
respectively. The parallelizers then use the MIPS code to generate 
parallelized code for its processor simulator and then translate this 
paralle|ized code into object code. 
The simulators receive the object code and then calculme the mud number 
of  em:L~utlen cycles req~rcd for execution. We can then compute 
performance by comparing the three processors" total number of  exe~tion 
cycles. For these expcxinlents, ~ ~ h l p s  are calodated by 
dividing the total number of  exeo~ion cycles of  the VLIW processor by 
the total number o f  cycles of  the CVLIW or the SVLIW processor. We 
assume input peramete~ which appreciate their influence on the 
simulation performance as the follows: each pmcess~ simulatm" has four 
functional units composed of  two integer unils and two floating-point units, 
the ce~e  replamnent is LRU (Least ReumtJy Uscd~ md memory 
reference latency is four cycles when cache miss ocoJ~ 

Table 1. Benchmark applications 
Benchmarks 

LIVERMORE 

MM 

WHETSTONE 

FFT 

I~(%) 

65.3/34.?  

68.4/31.6 

65.6/34.4 

43.3/$6.7 

VLIW r 

1 

I 

I 

! 

V L I W  s 

0 . 7 2 3  

0 . $ 6 g  

0 . 4 3 8  

0 . 3 8 5  

VLIW e 

0.725 

0.591 

0.385 

0.400 

Table 1 provides proportions o f  I/F (Integer instructions and 
Floating-point instructions) in benchmark programs used in this 
research. We choose benchmark programs that have a high 
proportion o f  floating-point instructions. This choice was 
appropriate because the CVLIW processor is more effective given 
individual instruction scheduling and reduced object code size. These 
applications all use double precision. Table I also tabulates the 
ratios o f  object code size o f  the VLIW to both the SVLIW and 
CVLIW processors. Even though VLIW c contains many bits o f  
dependency information, VLIWc averages 45% smaller than 
VLIWTand is almost the same size as VLIWs. 

4.2 Experimental Results 
In this section, we present and discuss the experimenls cmried out to 
evaluate the performance of  the CVLIW processor. We st~t by 
examining the effects of  scheduling sWategies and cache size on the 
CVLIW, the SVLIW, and the VLIW processors. 

4. 2.1. Effect of scheduling strategies 
Figure $ shows the speedup of  the CVLIW over the VLIW (or the 
SVLIW) processor using different scheduling slrategies. In order to 
evaluate scheduling performance only, we ignore cache effects such 
as cache miss rates and insUuction fetch cycles. We assume that an 
instruction cache size is perfect (no miss penalty). Tberefore, there is 
no ~ o n  that occurs cache miss penalty. In this experiment, we 
reduced the number o f  loop iterations in each benchmark applicaXinn 
in order to reduce simulation duration. 
Figure 5 illustrates that even though we assume a cache with a zero 
miss rate, the CVLIW's performance is still 9%-15% higher titan that 
of  the VLIW processor regardless of  benchmark application. We have 
the CVLIW's scheduling to thank for this speedup. This individual 
scheduling decreases the waiting time to process a set of  long 
inslructious when compared to the VLIW and SVLIW processors. By 
conwast, the VLIW and the SVLIW processor can't execute pending 
long inslructlons until the execution of  all insU'uctions in previous 
long inslructinn finishes. Besides, in simulation environment o f  
Figure 5, the SVLIW processor shows same performance in 
comparison to the VLIW processor. 
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Figure S. Speedup according to scheduling strategies 

4.2.1. Effect of Cache Size 
Figm~ 6 i l l ~  the impact of  cache size on speedup of the CVLIW 
processor with respect to both the SVLIW and VLIW ~rs. We 
v~ied the instruction cache size from 4k bytes to 321( bytes to compare 
performance according m changes in cache size. The speedups of  the 
CVLIW and the SVLIW processors woe  measured relative to the 
VLIW processor regardless of cache size. In this experiment, we 
reduced the number of loop iterations in each benchmark appfication in 
order to reduce simulation duration. 
These results indicate that the CVLIW processor is faster than the 
SVLIW processor regardless of both benchmark epplicatiens and cache 
size. This is due to the CVLIW's scheduling swategie~ Another factor is 
the CVLIW's nxiuced object code ~ wh. ich decreases average fetch 
cycles and also reduces cache misse& But cache size does play a role in 
performance di~erence. Figure 6 indicates that large~ cache sizes result 
in smaller speedup differences betwem the VLIW and CVLIW 
processom At smaller cache sizes, the VLIW's performance is slower 
due to higher cache miss rate~ Unlike the VLIW, the CVLIW's 
perfonmmce is not as sensitive to cache size due to its smalla- object code. 
But as ca~e size inc~ases, perform~ce ~ c e  de~:ases and the 
VLIW's pcrfonmnce approaches ~ of the CVLIW. Yet, vv~  assuming 
perfect cach~ the CVLIW is still fasmr 8ran the VLIW's because of its 
h~div~duai sdmdu~  strategy. 
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Figure 6. Speedup according to changes in cache size 

Overall, we attribute these CVLIW's performance gains to the 
balanced benefits of  compile-time and am-time parallelization, 
individual instruction scheduling, and size reduction o f  object 
code as previously described. 

5. CONCLUSION 
This paper describes a new ILP processor architecture referred 
to as Compressed VLIW (CVLIW). The proposed CVLIW 
processor is a hybrid architecture that has inherited features as 
ILP exploitation at compile-time of  the VLIW processor and 
individual instruction scheduling at run-time of  the superscalar 
processor. The CVLIW processor can individually schedule each 
instruction using dependency information contained within the 
CVLIW code. To schedule each instruction independently, the 
CVLIW processor has a number o f  functional unit and 
individual scheduler pairs. In this paper, the experimental 
evaluations have shown that the CVLIW processor achieves a 
high speedup over the VLIW and the SVLIW processors for a 
wide range o f  cache sizes and across various numerical 
benchmarks. The performance gains result from individual 
instruction scheduling and size reduction of  object code. Even 
though we assume a cache with a zero miss rate, the CVLIW's 
performance is still 9%-15% higher than that o f  the VLIW 
processor regardless o f  benchmark application. 
The CVLIW processor architecture opens several new avenues 
o f  research. Optimization o f  dependency information within 
object code, CVLIW compilers, and scalability o f  functional 
units in the system are just a few examples that will be 
investigated in future work. Particularly, our research will focus 
on optimization and management of  the dependency information 
required to achieve synchronization. 
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